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1. Introduction

It is known that there are a variety of useful and powerful
tools to deal with the nonlocal equations, namely, the
improved tan ðϕ/2Þ-expansion method [1], the homotopy
perturbation method [2], Lie symmetry analysis [3], the
Bäcklund transformation method [4], the sine-Gordon
expansion approach [5], the (G′/G, 1/G), modified (G′/G2),
and (1/G′)-expansion methods [6], the multiple Exp-
function method [7–10], Hirota’s bilinear method including
the (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-
Gibbon-Kotera-Sawada equation [11], the generalized unsta-
ble space time fractional nonlinear Schrödinger equation
[12], the inverse Cauchy problems [13], a generalized hyper-

elastic rod equation [14], the Kadomtsev-Petviashvili equa-
tion [15], the bKP equation [16], the generalized Burgers
equation [16], the inverse scattering transformation method
[17, 18], and the KP hierarchy reduction method [19].
Combining Hirota’s bilinear method with the KP reduction
hierarchy method, very recently, Rao et al. [20] discussed
the Kadomtsev-Petviashvili-based system and studied the
fusion of lumps and line solitons into line solitons, fission
of line solitons into lumps and line solitons, a mixture of
fission and fusion processes of lumps and line solitons, and
the inelastic collision of line rogue waves and line soliton.
An improved Hirota bilinear method for the nonlocal
complex MKdV equation was constructed in Ref. [21]. Sun
et al. [22] investigated a generalized three-component
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ton solution for three integrable equations in (2 + 1)-dimen-
sions including the (2 + 1)-dimensional KdV equation, the
Kadomtsev-Petviashvili equation, and the (2 + 1)-dimen-
sional Hirota-Satsuma-Ito equation and gave the asymptotic
analysis of N-soliton solution. Also, by using the bilinear Bell
polynomial approach, Cui [24] obtained some new exact
solutions for the new extended (2 + 1)-dimensional Boussi-
nesq equation which can be applied to describe the propaga-
tion of shallow water waves. And in Ref. [25], Cheng and
coauthors obtained the velocity resonance mechanism and
the two-, three-, and four-soliton molecules by utilizing the
Hirota bilinear method for the combined (2N + 1)th-order
Lax’s KdV equation. In [26], the new solitary wave solutions
for the (3 + 1)-dimensional extended Jimbo-Miwa equations
were investigated. Moreover, Ma obtained lump solutions to
a combined fourth-order nonlinear PDE in (2 + 1)-dimen-
sions [27] and interaction solutions to the Hirota-Satsuma-
Ito equation in (2 + 1)-dimensions [28].

Consider the (3 + 1)-dimensional variable-coefficient
nonlinear wave equation [29–31] which will be investi-
gated below:

ut + ϕ1 tð Þuux + ϕ2 tð Þuxxx + ϕ3 tð Þuxð Þx + ϕ4 tð Þuyy + ϕ5 tð Þuzz = 0,
ð1Þ

where u = uðx, y, z, tÞ is an unknown function and ϕjðtÞ
ðj = 1,⋯, 5Þ are all optional amounts. And u is the wave
amplitude, the variable coefficients ϕ1ðtÞ, ϕ2ðtÞ, ϕ3ðtÞ, ϕ4ðtÞ,
and ϕ5ðtÞ denote the bubble-liquid nonlinearity, the
bubble-liquid dispersion, the bubble-liquid viscosity, the y
-transverse-perturbation, and the z-transverse-perturbation,
respectively, and they are all real functions of t. Equation
(1) can be transformed to the following:

(i) The well-known constant-coefficient Kadomtsev-
Petviashvili equation with ϕ1ðtÞ = ±6, ϕ2ðtÞ = 1, ϕ4ðtÞ
= 3, ϕ3ðtÞ = ϕ5ðtÞ = 0 as

ut ± 6uux + uxxxð Þx + 3uyy = 0 ð2Þ

(ii) The cylindrical KdV equation with ϕ1ðtÞ = ±6, ϕ2ðtÞ
= 1, ϕ3ðtÞ = 1/2t, ϕ4ðtÞ = ϕ5ðtÞ = 0 as

ut ± 6uux + uxxx +
1
2t ux = 0 ð3Þ

For equation (1), some solutions including the multisoli-
ton, Bäcklund transformation, infinite conservation laws,
lump solutions, and other soliton wave solutions have been
investigated in Refs. [29, 30]. Also, Guo and Chen [31]
studied equation (1) and obtained the multisoliton solutions

and periodic solutions including X-periodic, Y-periodic, and
2-periodic wave solutions. The solitons, periodic, and travel-
ling waves of a generalized (3 + 1)-dimensional variable-
coefficient nonlinear wave equation in liquid with gas
bubbles were caught by Deng and Gao [29]. In [32], the
first-order lump wave solution and second-order lump wave
solution according to the corresponding two-soliton
solution and four-soliton solution were presented. The mul-
tisoliton solutions and periodic solutions for the (3 + 1
)-dimensional variable-coefficient nonlinear wave equation
in liquid with gas bubbles were reported by Guo and Chen
[31]. Two different types of bright solutions for the general-
ized (3 + 1)-dimensional nonlinear wave equation by the
traveling wave method were obtained by Guo and Chen
[33]. The special N wave solutions by applying the linear
superposition principle, the resonant multiple wave solu-
tions, and complexiton solutions were investigated for the
generalized (3 + 1)-dimensional nonlinear wave in liquid
with gas bubbles in [34]. Ma and coauthors probed and
analyzed N-soliton solutions and the Hirota conditions in
(1 + 1)-dimensions [13] and (1 + 2)-dimensions [35].

During the last years, the various analytical methods were
developed to find the exact solutions by powerful scholars for
interesting fields of research because of their wide number of
applications in the engineering and manufacturing fields,
nonlinear models, for example, nonlinear Schrodinger equa-
tion [36], the conformable nonlinear differential equation
governing wave-propagation in low-pass electrical transmis-
sion lines [37], the (2 + 1)-dimensional coupled variant
Boussinesq equations [38], the nonlinear directional couplers
with metamaterials by including spatial-temporal fractional
beta derivative evolution [39], a new (3 + 1)-dimensional
Hirota bilinear equation [40], oblique resonant nonlinear
waves with dual-power law nonlinearity [41], the coupled
Schrödinger-Boussinesq system with the beta derivative
[42], and the Hirota-Maccari system [43].

The major aim of this paper is to obtain some novel
exact analytical solutions, including interaction between a
lump-two kink solitons, interaction between two lumps,
and interaction between two lumps-soliton, lump-periodic,
and lump-three kink solutions for the (3 + 1)-dimensional
variable-coefficient (VC) nonlinear wave equation in liquid
with gas bubbles through the method of the bilinear analysis.

The rest of this article is organized as follows. In Section
2, explanations of multidimensional binary Bell polynomials
are given. Also, in Section 3, the bilinear form equation to
the (3 + 1)-dimensional VC nonlinear wave equation is con-
structed. In Section 4, we obtain the interaction between a
lump-two kink solitons, interaction between two lumps,
and interaction between two lumps-soliton, lump-periodic,
and lump-three kink solutions along with depicting 3D,
density, and 2D graphs for the VC nonlinear wave equation.
The conclusion is given in Section 5.

2. Multidimensional Binary Bell Polynomials

Based on Ref. [16, 44, 45], consider ξ = ξðx1, x2,⋯, xnÞ a
C∞ function with multivariables; the polynomials of the
following form

Hirota-Satsuma coupled KdV equation describing the inter-
actions of two long waves with different dispersion relations
by applying Hirota bilinear operator theory. By employing
the Hirota bilinear method, Ma [23] constructed the N-soli-



Yn1x1,⋯,njx j
ξð Þ ≡ Yn1,⋯,nj

ξs1x1,⋯,sjx j

� �
= e−ξ∂n1x1 ⋯ ∂

nj
x j e

ξ ð4Þ

are called the multidimensional Bell polynomials:

ξs1x1,⋯,sjx j = ∂s1x1 ⋯ ∂
sj
x jξ, ξ0xi ≡ ξ, s1 = 0,⋯, n1 ;⋯ ; sj = 0,⋯, nj,

ð5Þ

and we have

Y1 ξð Þ = ξx, Y2 ξð Þ = ξ2x + ξ2x, Y3 ξð Þ = ξ3x + 3ξxξ2x + ξ3x ,⋯, ξ = ξ x, t

x,t ξð Þ = ξx,t + ξxξt , Y2x,t ξð Þ = ξ2x,t + ξ2xξt + 2ξx,tξx + ξ2xξt ,⋯:

ð6Þ

Σn1x1,⋯,njxj
α, βð Þ = Yn1,⋯,nj

ξð Þ
���
ξs1x1,⋯,s jx j=

αs1x1,⋯,sjx j
, s1+s2+⋯+sj ,is odd,

βs1x1,⋯,sjx j
, s1+s2+⋯+sj ,is even:

8<
:

ð7Þ

We have the following conditions as

Σx αð Þ = αx, Σ2x α, βð Þ = β2x + α2x, Σx,t α, βð Þ = βx,t + αxαt ,⋯:

ð8Þ

Σn1x1 ,⋯,njx j
α, βð Þ

���
α=ln Θ/Δð Þ,β=ln ΘΔð Þ

= ΘΔð Þ−1Dn1
x1
⋯D

nj
xjΘΔ,

ð9Þ

with Hirota operator

Yj
i=1

Dni
xi
g · η =

Yj
i=1

∂
∂xi

−
∂

∂xi′

� �ni
Θ x1,⋯, xj
� �

Δ x1′,⋯, xj′
� ������

x1=x1′,⋯,xj=xj′
:

ð10Þ

Proposition 2. Take ΞðγÞ =∑i δiPs1x1 ,⋯,sjx j = 0 and α = ln
ðΘ/ΔÞ, β = ln ðΘΔÞ, we have

〠
i

δ1iYn1x1 ,⋯,njx j
α, βð Þ = 0,

〠
i

δ1iYs1x1 ,⋯,sjx j α, βð Þ = 0,

8>><
>>:

ð11Þ

which need to satisfy

R γ′, γ
� �

=R γ′
� �

−R γð Þ =R β + αð Þ −R β − αð Þ = 0:

ð12Þ

The generalized Bell polynomials Yn1x1 ,⋯,njx j
ðξÞ are as

ΘΔð Þ−1Dn1
x1
⋯D

nj
xjΘΔ = Σn1x1 ,⋯,njx j

α, βð Þ
���
α=ln Θ/Δð Þ,β=ln ΘΔð Þ

= Σn1x1 ,⋯,njx j
α, α + γð Þ

���
α=ln Θ/Δð Þ,γ=ln ΘΔð Þ

= 〠
n1

k1

⋯ 〠
nj

kj

Yj
i=1

ni

ki

 !
Pk1x1 ,⋯,kjx j γð ÞY n1−k1ð Þx1 ,⋯, nj−kjð Þxj αð Þ:

ð13Þ

The Cole-Hopf transformation will be as

Yk1x1 ,⋯,kjx j α = ln φð Þð Þ =
φn1x1 ,⋯,njx j

φ
,

ΘΔð Þ−1Dn1
x1
⋯D

nj
xjΘΔ

���
Δ=exp γ/2ð Þ,Θ/Δ=φ

= φ−1 〠
n1

k1

⋯ 〠
nj

kj

Yj
d=1

nd

kd

 !
Pk1x1 ,⋯,kdxd γð Þφ n1−k1ð Þx1 ,⋯, nd−kdð Þxd ,

ð14Þ

with

Yt αð Þ = φt

φ
,

Y2x α, βð Þ = γ2x +
φ2x

φ
,

Y2x,y α, βð Þ = γ2xφy

φ
+
2γx,yφx

φ
+
φ2x,y
φ

:

ð15Þ

3. Bilinear Form Equation to the (3 + 1)D VC
Nonlinear Wave Equation

To find the linearizing representation, we consider the below:

u = cγxx + u0,
γ = γ x, y, z, tð Þ,
c = c tð Þ:

ð16Þ

Inserting equation (16) into equation (1), one obtains

R γð Þ = d
dt

c tð Þ
� �

∂
∂x

γ x, y, z, tð Þ

+ c tð Þ ∂2

∂x∂t
γ x, y, z, tð Þ + ϕ1 tð Þ c tð Þð Þ2 ∂

∂x
γ x, y, z, tð Þ

� �2

+ ϕ1 tð Þ c tð Þð Þ2γ x, y, z, tð Þ ∂2

∂x2
γ x, y, z, tð Þ

+ ϕ2 tð Þc tð Þ ∂4

∂x4
γ x, y, z, tð Þ + ϕ3 tð Þc tð Þ ∂2

∂x2
γ x, y, z, tð Þ

+ ϕ4 tð Þc tð Þ ∂2

∂y2
γ x, y, z, tð Þ + ϕ5 tð Þc tð Þ ∂2

∂z2
γ x, y, z, tð Þ = 0,

ð17Þ

with

ð Þ,
Y

The multidimensional binary Bell polynomials can be
written as

Proposition 1. Suppose α = ln ðΘ/ΔÞ, β = ln ðΘΔÞ, then the

relations between binary Bell polynomials and Hirota D
-operator can be written as below:



c = 12: ð18Þ

The new equation RðγÞ is as

R γð Þ =Px,t + ϕ2 tð Þ P4x + 3P2
2x

� �
+ ϕ3 tð ÞP2x + ϕ4 tð ÞP2y + ϕ5 tð ÞP2z = 0:

ð19Þ

Applying a change of dependent variable

γ = ln gð Þ⟺ u = 12 ln gð Þxx: ð20Þ

Theorem 3. With the following relations

γ = ln gð Þ⟺ u = 12 ln gð Þxx, ð21Þ

into equation (1), the (3 + 1)D VC nonlinear wave equation
can be linearized as the following bilinear equation:

R gð Þ = ggxt − gxgtð Þ + ϕ2 tð Þ gg4x − 4gxg3x + 3g2
xx

� �
+ ϕ3 tð Þ ggxx − g2x

� �
,

ð22Þ

ϕ4ðtÞðggyy − g2
yÞ + ϕ5 ðtÞðggzz − g2zÞ = 1/2ðDxDt + ϕ2ðtÞ

D4
x + ϕ3ðtÞD2

x + ϕ4ðtÞD2
y + ϕ5ðtÞD2

zÞg · g = 0, where g = gðx,
y, z, tÞ and γ = γðx, y, z, tÞ:

4. Lump, Lump-Kink, and Other
Wave Solutions

Wewould like to derive the general soliton solutions contain-
ing interaction between lump-two kink solitons, interaction

between two lumps, and interaction between two lumps-sol-
iton, lump-periodic, and lump-three kink solutions.

4.1. Interaction between a Lump-Two Kink Soliton Solutions.
In this section, we would like to present the general solutions
of the (3 + 1)-dimensional variable-coefficient nonlinear
wave equation through utilizing the bilinear method as the
below frame:

g = τ21 + τ22 + exp τ3ð Þ + exp τ4ð Þ + exp τ3 + τ4ð Þ + ε5 tð Þ, τj
= αjx + βjy + δjz + εj tð Þ, j
= 1, 2, 3, ε0 > 0:

ð23Þ

The values αi, βi, δi, εiðtÞ ði = 1, 2, 3Þ are real constants to
be computed. By substituting (23) into (22), we obtain a
system containing 42 nonlinear equations. By solving the
nonlinear system, the determined coefficients will be got as
the below cases.

Type I

ε1 tð Þ = ε3 tð Þ = ε4 tð Þ = ε5 tð Þ = 0, ε2 tð Þ

=
ð

−
α2

2ϕ2 tð Þ + β2
2ϕ3 tð Þ

α2
dt, α1 = α3 = α4 = 0, α2 = α2,

β1 = β3 = β4 = 0, β2 = β2, δ1 = δ1, δ2 = δ2, δ3 = δ3, δ4 = δ4:

ð24Þ

The solutions are given as follows:

If τ21 + τ22 + exp ðτ3Þ + exp ðτ4Þ + exp ðτ3 + τ4Þ + ε5ðtÞ
⟶∞, the lump solutions u⟶ 0 at any t. By selecting
the parameters δ1 = 1, δ2 = 2, δ3 = 1:5, δ4 = 3, α2 = 1, β2 = 3,
ϕ2ðtÞ = cos ðtÞ, ϕ3ðtÞ = sin ðtÞ, x = 1, y = 1, then plots of
equation (25) are plotted in Figure 1. And also, by select-
ing the parameters δ1 = 1, δ2 = 2, δ3 = 1:5, δ4 = 3, α2 = 1, β2
= 3, ϕ2ðtÞ = 1/4 cos ð2tÞ, ϕ3ðtÞ = 1/4 sin ð1 + 2tÞ, x = 1, y = 1,
then plots of equation (25) are plotted in Figure 2.

Type II

ε1 tð Þ =
ð

− 2 δ1ϕ4 tð Þ β1δ2 − β2δ1ð Þ
α2β1

dt, ε2 tð Þ

=
ð

−
α2

2β1
2ϕ2 tð Þ + β1

2δ2
2ϕ4 tð Þ − β2

2δ1
2ϕ4 tð Þ

β1
2α2

dt, ε4 tð Þ = ε5 tð Þ = 0,

ε3 tð Þ =
ð

− 2 β3δ1ϕ4 tð Þ β1δ2 − β2δ1ð Þ
β1

2α2
dt, α1

= α3 = α4 = 0, α2 = α2, β1 = β1, β2 = β2, β3 = β3, β4 = 0,

δ1 = δ1, δ2 = δ2, δ3 =
β3δ1
β1

, δ4

= 0, ϕ1 tð Þ = 0, ϕ3 tð Þ = −
δ1

2ϕ4 tð Þ
β1

2 :

ð26Þ

The solutions are given as follows:

u1 =
24α22

δ1
2z2 + α2x + β2y + δ2z+

Ð
− α2

2ϕ2 tð Þ + β2
2ϕ3 tð Þ/α2dt

� �2 + eδ3z + eδ4z + eδ3z+δ4z

−
48 α2x + β2y + δ2z+

Ð
− α2

2ϕ2 tð Þ + β2
2ϕ3 tð Þ/α2dt

� �2
α2

2

δ1
2z2 + α2x + β2y + δ2z+

Ð
− α2

2ϕ2 tð Þ + β2
2ϕ3 tð Þ/α2dt

� �2 + eδ3z + eδ4z + eδ3z+δ4z
� �2 :

ð25Þ



u2 =
24α22

τ1
2 + τ2

2 + 2 eβ3y+β3δ1z/β1+
Ð

−2 β3δ1ϕ4 tð Þ β1δ2−β2δ1ð Þ/β1
2α2 dt

−
48 τ22α22

τ1
2 + τ2

2 + 2 eβ3y+β3δ1z/β1+
Ð

−2β3δ1ϕ4 tð Þ β1δ2−β2δ1ð Þ/β12α2dt
� �2 ,

ð27Þ

τ1 = β1y + δ1z+
ð

− 2 δ1ϕ4 tð Þ β1δ2 − β2δ1ð Þ
α2β1

dt, τ2

= α2x + β2y + δ2z+
ð

−
α2

2β1
2ϕ2 tð Þ + β1

2δ2
2ϕ4 tð Þ − β2

2δ1
2ϕ4 tð Þ

β1
2α2

dt:

ð28Þ

If τ21 + τ22 + exp ðτ3Þ + exp ðτ4Þ + exp ðτ3 + τ4Þ + ε5ðtÞ
⟶∞, the lump solutions u⟶ 0 at any t. By selecting
the parameters δ1 = 1, δ2 = 2, α2 = 1, β1 = 2, β2 = 3, β3 = 4,
ϕ2ðtÞ = cos ðtÞ, ϕ4ðtÞ = sin ðtÞ, x = 1, y = 1, then plots of
equation (27) are plotted in Figure 3.

Type III

ε1 tð Þ =
ð
2 δ1ϕ4 tð Þ β2δ4 − β4δ2ð Þ

α2β4
dt, ε2 tð Þ

=
ð

−
α2

2β4
2ϕ2 tð Þ − β2

2δ4
2ϕ4 tð Þ + β4

2δ2
2ϕ4 tð Þ

β4
2α2

dt, ε5 tð Þ = 0,

ε3 tð Þ =
ð
2 δ3ϕ4 tð Þ β2δ4 − β4δ2ð Þ

α2β4
dt, ε4 tð Þ

=
ð
2 δ4ϕ4 tð Þ β2δ4 − β4δ2ð Þ

α2β4
dt, α1 = α3 = α4 = 0, α2 = α2,

β1 =
β4δ1
δ4

, β2 = β2, β3 =
δ3β4
δ4

, β4

= β4, δ1 = δ1, δ2 = δ2, δ3 = δ3, δ4

= δ4, ϕ1 tð Þ = 0, ϕ3 tð Þ = −
δ4

2ϕ4 tð Þ
β4

2 :

ð29Þ
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Figure 1: Plots of interaction lump with two solitons (25).
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The solutions are given as follows:

u3 = 24 α2
2

τ1
2 + τ2

2 + F1 + F2 + F3
− 48 τ2

2α2
2

τ1
2 + τ2

2 + F1 + F2 + F3ð Þ2
,

ð30Þ

τ1 =
β4δ1y
δ4

+ δ1z+
ð
2 δ1ϕ4 tð Þ β2δ4 − β4δ2ð Þ

α2β4
dt, τ2

= α2x + β2y + δ2z+
ð

−
α2

2β4
2ϕ2 tð Þ − β2

2δ4
2ϕ4 tð Þ + β4

2δ2
2ϕ4 tð Þ

β4
2α2

dt,

ð31Þ

F1 = eδ3β4y/δ4+δ3z+
Ð

2 δ3ϕ4 tð Þ β2δ4−β4δ2ð Þ/α2β4 dt , F2

= eβ4y+δ4z+2 δ4tϕ4 tð Þ β2δ4−β4δ2ð Þ/α2β4 ,
ð32Þ

F3 = eδ3β4y/δ4+δ3z+
Ð

2 δ3ϕ4 tð Þ β2δ4−β4δ2ð Þ/α2β4 dt+β4y+δ4z+2 δ4tϕ4 tð Þ β2δ4−β4δ2ð Þ/α2β4 :

ð33Þ

By selecting the parameters δ1 = 1, δ2 = 2, δ3 = 3, δ4 = 4,
α2 = 1, β2 = 3, β4 = 4, ϕ2ðtÞ = cos ðtÞ, ϕ4ðtÞ = sin ðtÞ, x = 1, y
= 1, then plots of equation (30) are plotted in Figure 4.

Type IV

ε1 tð Þ = −
ε2 tð Þδ2
δ1

, ε3 tð Þ

=
ð

−
α3

4ϕ1 tð Þ + α3
2ϕ2 tð Þ + β3

2ϕ3 tð Þ
α3

dt, ε4 tð Þ

= 0, ε5 tð Þ = −2 ε2 tð Þ δ1ε2 tð Þ − δ2ε1 tð Þð Þ
δ1

,

α1 = α2 = α4 = 0, α3 = α3, β1 = β2 = β4 = 0, β3
= β3, δ1 = δ1, δ2 = δ2, δ3 = δ3, δ4 = δ4, ϕ4 tð Þ = 0:

ð34Þ

The solutions are given as follows:

By selecting the parameters δ1 = 1, δ2 = 2, δ3 = 3, δ4 = 4,
α2 = 1, β2 = 3, β4 = 4, ϕ2ðtÞ = cos ðtÞ, ϕ4ðtÞ = sin ðtÞ, x = 1, y
= 1, then plots of equation (35) are plotted in Figure 5.

Type V

ε1 tð Þ = −
ε2 tð Þδ2
δ1

, ε3 tð Þ

=
ð

− α3 α3
2ϕ1 tð Þ + ϕ2 tð Þ� �

dt, ε4 tð Þ = 0, ε5 tð Þ

=
ð

− 2 d/dtε2 tð Þð Þ δ1ε2 tð Þ − δ2ε1 tð Þð Þ
δ1

dt,
α1 = α2 = α4 = 0, α3 = α3, β1 = β2 = β4 = 0, β3

= β3, δ1 = δ1, δ2 = δ2, δ3 = δ3, δ4 = δ4, ϕ3 tð Þ = ϕ4 tð Þ = 0:
ð38Þ
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Figure 3: Plots of interaction lump with two solitons (27).

u4 =
12 α32F1 + 12 α32F2

δ1z − ε2 tð Þδ2/δ1ð Þ2 + δ2z + ε2 tð Þð Þ2 + F1 + eδ4z + F2 − 2 ε2 tð Þ δ1ε2 tð Þ − δ2ε1 tð Þð Þ/δ1
, ð35Þ

12 α3F1 + α3F2ð Þ2
δ1z − ε2 tð Þδ2/δ1ð Þ2 + δ2z + ε2 tð Þð Þ2 + F1 + eδ4z + F2 − 2 ε2 tð Þ δ1ε2 tð Þ − δ2ε1 tð Þð Þ/δ1

� �2 , ð36Þ

F1 = eα3x+β3y+δ3z+
Ð

−α34ϕ1 tð Þ+α32ϕ2 tð Þ+β3
2ϕ3 tð Þ/α3 dt , F2 = eα3x+β3y+δ3z+

Ð
−α34ϕ1 tð Þ+α32ϕ2 tð Þ+β32ϕ3 tð Þ/α3 dt+δ4z: ð37Þ



The solutions are given as follows:

u5 = 12 ∂2

∂x2
ln F5ð Þ,

F5 = δ1z + ε1 tð Þð Þ2 + δ2z + ε2 tð Þð Þ2 + eα3x+β3y+δ3z+ε3 tð Þ

+ eβ4y+δ4z+ε4 tð Þ + eα3x+β3y+δ3z+ε3 tð Þ+β4y+δ4z+ε4 tð Þ + ε5 tð Þ:
ð39Þ

Type VI

ε3 tð Þ =
ð
−
α3

4ϕ1 tð Þ + α3
2ϕ2 tð Þ + δ3

2ϕ3 tð Þ
α3

dt, ε2 tð Þ

= ε4 tð Þ = 0, ε5 tð Þ = − ε1 tð Þð Þ2,

α1 = α2 = α4 = 0, α3 = α3, β1 = 0, β2 = β2, β3
= β3, β4 = β4, δ1 = δ2 = δ4 = 0, δ3 = δ3, ϕ3 tð Þ = 0:

ð40Þ

The solutions are given as follows:

u5 = 12 ∂2

∂x2
ln F6ð Þ, F6 = β2y + ε2 tð Þð Þ2 + eα3x+β3y+δ3z+ε3 tð Þ

+ eβ4y+ε4 tð Þ + eα3x+β3y+δ3z+ε3 tð Þ+β4y+ε4 tð Þ:

ð41Þ

Type VII

ε3 tð Þ =
ð

− α3 α3
2ϕ1 tð Þ + ϕ2 tð Þ� �

dt, ε1 tð Þ = ε2 tð Þ
= ε4 tð Þ = ε5 tð Þ = 0, α1 = α2 = α4 = 0, α3 = α3,

β1 = 0, β2 = β2, β3 = β3, β4 = β4, δ1 = δ1, δ2
= δ2, δ3 = δ3, δ4 = δ4, ϕ3 tð Þ = ϕ4 tð Þ = 0:

ð42Þ

The solutions are given as follows:
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u7 = 12 ∂2

∂x2
ln F7ð Þ,

F7 = z2δ1
2 + β2y + δ2zð Þ2 + eα3x+β3y+δ3z+

Ð
−α3 α3

2ϕ1 tð Þ+ϕ2 tð Þð Þdt

+ eβ4y+δ4z + eα3x+β3y+δ3z+
Ð

−α3 α3
2ϕ1 tð Þ+ϕ2 tð Þð Þdt+β4y+δ4z:

ð43Þ

Type VIII

ε2 tð Þ =
ð

− 2 δ2ϕ4 tð Þ β2δ3 − β3δ2ð Þ
α3β2

dt, ε3 tð Þ

=
ð

−
α3

4β2
2ϕ1 tð Þ + α3

2β2
2ϕ2 tð Þ + β2

2δ3
2ϕ4 tð Þ − β3

2δ2
2ϕ4 tð Þ

β2
2α3

dt,

ε4 tð Þ =
ð

− 2 β2δ3 − β3δ2ð Þδ4ϕ4 tð Þ
α3β2

dt, ε5 tð Þ

= −ε21 tð Þ, α1 = α2 = α4 = 0, α3 = α3,

β1 = 0, β2 = β2, β3 = β3, β4 =
β2δ4
δ2

, δ1 = δ1, δ2

= δ2, δ3 = δ3, δ4 = δ4, ϕ3 tð Þ = −
δ2

2ϕ4 tð Þ
β2

2 :

ð44Þ

The solutions are given as follows:

u8 = 12 ∂2

∂x2
ln F8ð Þ,

F8 = ε1 tð Þð Þ2 + β2y + δ2z + ε2 tð Þð Þ2 + eα3x+β3y+δ3z+ε3 tð Þ

+ eβ2δ4y/δ2+δ4z+ε4 tð Þ + eα3x+β3y+δ3z+ε3 tð Þ+β2δ4y/δ2+δ4z+ε4 tð Þ + ε5 tð Þ:
ð45Þ

Type IX

ε1 tð Þ = −
ε2 tð Þβ2
β1

, ε3 tð Þ =
ð

− α3 α3
2ϕ1 tð Þ + ϕ2 tð Þ� �

dt, ε4 tð Þ

= 0, ε5 tð Þ =
ð

− 2 d/dtε2 tð Þð Þ β1ε2 tð Þ − β2ε1 tð Þð Þ
β1

dt,

α1 = α2 = α4 = 0, α3 = α3, β1 = β1, β2 = β2, β3 = β3, β4 = β4,

δ1 = δ1, δ2 =
β2δ1
β1

, δ3 = δ3, δ4 = δ4, ϕ3 tð Þ = ϕ4 tð Þ = 0: ð46Þ

The solutions are given as follows:

u9 = 12 ∂2

∂x2
ln F9ð Þ, F9 = β1y + δ1z + ε1 tð Þð Þ2

+ β2y +
β2δ1z
β1

+ ε2 tð Þ
� �2

+ eα3x+β3y+δ3z+ε3 tð Þ + eβ4y+δ4z+ε4 tð Þ

+ eα3x+β3y+δ3z+ε3 tð Þ+β4y+δ4z+ε4 tð Þ + ε5 tð Þ:
ð47Þ

Type X

The solutions are given as follows:

u10 = 12 ∂2

∂x2
ln F10ð Þ, F10 = β1y + δ1z + ε1 tð Þð Þ2

+ β2y +
β2δ1z
β1

+ ε2 tð Þ
� �2

+ eα3x+β3y+δ3z+ε3 tð Þ

+ eβ1δ4y/δ1+δ4z+ε4 tð Þ + eα3x+β3y+δ3z+ε3 tð Þ+β1δ4y/δ1+δ4z+ε4 tð Þ + ε5 tð Þ:
ð49Þ

By selecting the parameters δ1 = 1, δ3 = 3, δ4 = 4, α3 = 1,

β1 = 4, β2 = 2, β3 = 3, ϕ1ðtÞ = sin ð2tÞ, ϕ2ðtÞ = cos ð2tÞ, ϕ4ðtÞ
= cos ð3tÞ, ε2ðtÞ = exp ðtÞ, x = 1, y = 1, then plots of equation
(49) are plotted in Figure 6. And also, by choosing the
parameters δ1 = 1, δ3 = 3, δ4 = 4, α3 = 1, β1 = 4, β2 = 2, β3 =
3, ϕ1ðtÞ = exp ðtÞ sin ðtÞ, ϕ2ðtÞ = exp ðtÞ cos ð2tÞ, ϕ4ðtÞ = exp
ðtÞ cos ð3tÞ, ε2ðtÞ = exp ð2tÞ, x = 1, y = 1, then plots of
equation (49) are plotted in Figure 7. Moreover, by choosing
the parameters δ1 = 1, δ3 = 3, δ4 = 4, α3 = 1, β1 = 4, β2 = 2, β3
= 3, ϕ1ðtÞ = 1/1 + sin ðtÞ, ϕ2ðtÞ = cos ðtÞ/ð2 + sin ðtÞÞ, ϕ4ðtÞ
= cos ðtÞ, ε2ðtÞ = sin2ðtÞ + tan ðtÞ, x = 1, y = 1, then plots of
equation (49) are plotted in Figure 8.

ε1 tð Þ =
ð

−
2β1

3δ1δ3ϕ4 tð Þ − 2β1
2β3δ1

2ϕ4 tð Þ + 2β1β2
2δ1δ3ϕ4 tð Þ − 2β2

2β3δ1
2ϕ4 tð Þ + d/dtε2 tð Þð Þα3β1

2β2
α3β1

3 dt,

ε3 tð Þ =
ð

−
α3

4β1
2ϕ1 tð Þ + α3

2β1
2ϕ2 tð Þ + β1

2δ3
2ϕ4 tð Þ − β3

2δ1
2ϕ4 tð Þ

α3β1
2 dt, ε4 tð Þ =

ð
− 2 β1δ3 − β3δ1ð Þδ4ϕ4 tð Þ

α3β1
dt,

ε5 tð Þ =
ð

− 2 ε2 tð Þβ1
4α3+

Ð
S1 + d/dtε2 tð Þð Þα3β1

2β2 dtβ2
� �

S2 + d/dtε2 tð Þð Þα3β1
2� �

α3
2β1

6 dt,

S1 = 2 δ1ϕ4 tð Þ β1
2 + β2

2� �
β1δ3 − β3δ1ð Þ, S2 = 2β2δ1ϕ4 tð Þ β1δ3 − β3δ1ð Þ,

α1 = α2 = α4 = 0, β4 =
β1δ4
δ1

, δ1 = δ1, δ2 =
β2δ1
β1

, δ3 = δ3, δ4 = δ4, ϕ3 tð Þ = −
δ1

2ϕ4 tð Þ
β1

2 :

ð48Þ
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4.2. Interaction between Two Lump Solutions. Here, we offer
interaction between two lump solutions containing combi-
nation of two functions for the (3 + 1)-dimensional
variable-coefficient nonlinear wave equation through utiliz-
ing the bilinear method as the below frame:

g = τ41 + τ22 + τ23 + ε4 tð Þ, τj = α jx + βjy + δjz + ε j tð Þ, j = 1, 2, 3, ε4 tð Þ > 0:

ð50Þ

The valuesαi, βi, δi, εiðtÞði = 1, 2, 3Þ are real constants to be
computed. By appending (50) into (22), we receive to a system
containing 42 nonlinear equations. To solve the nonlinear sys-
tem, the determined coefficients will be got as the below cases.

Type I

ε1 tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − ε4 tð Þ4

p
, ε2 tð Þ

=
ð

− 2 β2β3ϕ3 tð Þ + δ2δ3ϕ4 tð Þ
α3

dt + C2, α1 = α2 = 0, α3 = α3,

ε3 tð Þ =
ð

−
α3

2ϕ2 tð Þ − ϕ3 tð Þβ2
2 + β3

2ϕ3 tð Þ − δ2
2ϕ4 tð Þ + δ3

2ϕ4 tð Þ
α3

dt

+ C3, β1 = 0, β2 = β2,

β3 = β3, δ1 = 0, ϕ1 tð Þ = −
1
3

r1
4 + r4

� �
δ2

2ϕ4 tð Þ + ϕ3 tð Þβ2
2� �

α3
4 : ð51Þ

The solutions are given as follows:

u1 = 12 ∂2

∂x2
ln F1ð Þ, F1 = ε1 tð Þð Þ4 + β2y + δ2z + ε2 tð Þð Þ2

+ α3x + β3y + δ3z + ε3 tð Þð Þ2 + ε4 tð Þ:
ð52Þ

If τ41 + τ22 + τ23 + ε4ðtÞ⟶∞, the lump solutions u⟶ 0
at any t. By selecting the parameters δ2 = 2, δ3 = 3, α3 = 3, β2
= 2, β3 = 1, ϕ2ðtÞ = t, ϕ3ðtÞ = t2, ϕ4ðtÞ = 1 + t, x = 1, z = 1,
then plots of equation (52) are plotted in Figure 9. And also, by
selecting the parameters δ2 = 2, δ3 = 3, α3 = 3, β2 = 2, β3 = 1,
ϕ2ðtÞ = cos ðtÞ, ϕ3ðtÞ = sin ðtÞ, ϕ4ðtÞ = cos ð2tÞ, x = 1, z = 1,
then plots of equation (52) are plotted in Figure 10. Moreover,
by selecting the parameters δ2 = 2, δ3 = 3, α3 = 3, β2 = 2, β3 =
1, ϕ2ðtÞ = t2 sin ð2tÞ, ϕ3ðtÞ = t sin ð3tÞ, ϕ4ðtÞ = t cos ð3tÞ, x =
1, z = 1, then plots of equation (52) are plotted in Figure 11.

Type II

The solutions are given as follows:

u2 = 12 ∂2

∂x2
ln F2ð Þ, F2 = ε1 tð Þð Þ4 + α2x + β2y + δ2z + ε2 tð Þð Þ2

+ α3x +
α3β2y
α2

+ α3δ2z
α2

+ ε3 tð Þ
� �2

+ ε4 tð Þ:

ð54Þ

Type III

ε1 tð Þ =
ð

− 2 ϕ4 tð Þδ1 β1δ3 − β3δ1ð Þ
α3β1

dt, ε3 tð Þ

=
ð

−
α3

2β1
2ϕ2 tð Þ + β1

2δ3
2ϕ4 tð Þ − β3

2δ1
2ϕ4 tð Þ

α3β1
2 dt,

ε4 tð Þ = − ε2 tð Þð Þ2 + C1, α1 = α2 = β2

= δ2 = ϕ1 tð Þ = 0, ϕ3 tð Þ = −
δ1

2ϕ4 tð Þ
β1

2 :
ð55Þ

The solutions are given as follows:

u3 = 12 ∂2

∂x2
ln F3ð Þ, F3 = β1y + δ1z + ε1 tð Þð Þ4 + ε2 tð Þð Þ2

+ α3x + β3y + δ3z + ε3 tð Þð Þ2 + ε4 tð Þ:
ð56Þ

4.3. Interaction between Two Lumps-Soliton Solutions. Here,
we offer interaction between two lumps-soliton solutions con-
taining combination of two functions for the (3 + 1)-dimen-
sional variable-coefficient nonlinear wave equation through
utilizing the bilinear method as the below frame:

g = τ41 + τ22 + τ23 + exp τ4ð Þ + ε5 tð Þ, τj
= αjx + βjy + δjz + εj tð Þ, j
= 1, 2, 3, 4, ε4 tð Þ > 0:

ð57Þ

The values αi, βi, δi, εiðtÞði = 1, 2, 3, 4Þ are real constants
to be computed. By putting (57) into (22), we receive a

ε1 tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− −C1α2

3+ Ð F tð Þ dt� �
α2

4
q

α2
, α1 = β1 = δ1 = ϕ1 tð Þ = 0, δ3 =

α3δ2
α2

,

F tð Þ = 2 ϕ2 tð Þα22α3 + ϕ3 tð Þα3β2
2 + ϕ4 tð Þα3δ22 +

d
dt

ε3 tð Þ
� �

α2
2

� �
ε3 tð Þα2 − ε2 tð Þα3ð Þ + d

dt
ε4 tð Þ

� �
α2

3,

ε2 tð Þ =
ð

−
α2

2 + α3
2� �

δ2
2ϕ4 tð Þ + ϕ3 tð Þβ2

2 + ϕ2 tð Þα22
� �

+ d/dtε3 tð Þð Þα22α3
α2

3 dt + C2: ð53Þ
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system containing 119 nonlinear equations. To solve the
nonlinear system, the determined coefficients will be got
as the below cases.

Type I

ε1 tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 tð Þ + A2 tð Þð Þα24

p
α2

,A1 tð Þ

= 2 α32β2
2
ð
ε2 tð Þϕ3 tð Þ dt

− 2 α3
ð
ε3 tð Þϕ2 tð Þ dtα23 − 2 α3β2

2
ð
ε3 tð Þϕ3 tð Þdtα2,

A2 tð Þ = 2 α32
ð
ϕ2 tð Þε2 tð Þ dtα22 + 2 α3

ð
ε2 tð Þ d

dt
ε3 tð Þ dtα22

− ε3 tð Þð Þ2α23 − ε5 tð Þα23 + C1α2
3,

ε2 tð Þ =
ð

−
α2

2 + α3
2� �

ϕ2 tð Þα22 + ϕ3 tð Þβ2
2� �

+ d/dtε3 tð Þð Þα22α3
α2

3 dt

+ C2, ε4 tð Þ = 0,

α1 = α4 = β1 = β4 = δ1 = ϕ1 tð Þ = ϕ4 tð Þ = 0, β3 =
α3β2
α2

, δ3 =
α3δ2
α2

:

ð58Þ

The solutions are given as follows:

u1 = 12 ∂2

∂x2
ln F1ð Þ, F1 = ε1 tð Þð Þ4 + α2x + β2y + δ2z + ε2 tð Þð Þ2

+ α3x +
α3β2y
α2

+ α3δ2z
α2

+ ε3 tð Þ
� �2

+ eδ4z+ε4 tð Þ + ε5 tð Þ:

ð59Þ

If τ41 + τ22 + τ23 + exp ðτ4Þ + ε5ðtÞ⟶∞, the lump solu-
tions u⟶ 0 at any t. By selecting the parameters δ2 = 1,
δ4 = 2, α2 = 1, α3 = 2, β2 = 3, ϕ2ðtÞ = cos ðtÞ, ϕ3ðtÞ = sin ðtÞ,
ε2ðtÞ = cos ð2tÞ, ε3ðtÞ = sin ð2tÞ, x = 1, y = 1, then plots of
equation (59) are plotted in Figure 12. And also, by selecting
the parameters δ2 = 1, δ4 = 2, α2 = 1, α3 = 2, β2 = 3, ϕ2ðtÞ =
cos ð1 + tÞ, ϕ3ðtÞ = sin ð1 + tÞ, ε2ðtÞ = cos ð1 + 3tÞ, ε3ðtÞ = sin
ð1 + 3tÞ, x = 1, y = 1, then plots of equation (52) are plotted
in Figure 13.

Type II

ε1 tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 tð Þ + A2 tð Þ + A3 tð Þð Þα42α234

p
α4α2

,

A1 tð Þ = 2 α32β4
2
ð
ε2 tð Þϕ3 tð Þ dt − 2 α3

ð
ε3 tð Þϕ2 tð Þ dtα42α2

− 2 α3β4
2
ð
ε3 tð Þϕ3 tð Þ dtα2,

A2 tð Þ = 2 α32
ð
ϕ2 tð Þε2 tð Þ dtα42 + 2 α32δ42

ð
ϕ4 tð Þε2 tð Þ dt

− 2 α3δ42
ð
ϕ4 tð Þε3 tð Þ dtα2,

A3 tð Þ = 2 α3
ð
ε2 tð Þ d

dt
ε3 tð Þ dtα42 − ε3 tð Þð Þ2α42α2 − ε5 tð Þα42α2 + C1α4

2α2,

ε2 tð Þ =
ð

−
α2

2 + α3
2� �

α4
2ϕ2 tð Þ + β4

2ϕ3 tð Þ + δ4
2ϕ4 tð Þ� �

+ d/dtε3 tð Þð Þα3α42
α4

2α2
dt,

ε4 tð Þ =
ð

−
α4

2ϕ2 tð Þ + β4
2ϕ3 tð Þ + δ4

2ϕ4 tð Þ
α4

dt,

α1 = β1 = δ1 = ϕ1 tð Þ = 0, β2 =
α2β4
α4

, β3 =
α3β4
α4

, δ2 =
α2δ4
α4

, δ3 =
α3δ4
α4

: ð60Þ

The solutions are given as follows:

u2 = 12 ∂2

∂x2
ln F2ð Þ, ð61Þ

F2 = ε1 tð Þð Þ4 + α2x +
α2β4y
α4

+ α2δ4z
α4

+ ε2 tð Þ
� �2

+ α3x +
α3β4y
α4

+ α3δ4z
α4

+ ε3 tð Þ
� �2

+ eα4x+β4y+δ4z+ε4 tð Þ + ε5 tð Þ:

ð62Þ

By selecting the parameters δ4 = 2, α2 = 1, α3 = 2, α4 = 4,
β4 = 3, ϕ2ðtÞ = cos ðtÞ, ϕ3ðtÞ = sin ðtÞ, ϕ4ðtÞ = sin ð2tÞ, ε2ðtÞ
= cos ð2tÞ, ε3ðtÞ = sin ð2tÞ, ε4ðtÞ = sin ð3tÞ, C1 = 1, C2 = 2, x
= 1, y = 1, then plots of equation (61) are plotted in Figure 14.
And also, by selecting the parameters δ4 = 2, α2 = 1, α3 =
2, α4 = 4, β4 = 3, ϕ2ðtÞ = cos ðtÞ, ϕ3ðtÞ = sin ðtÞ, ϕ4ðtÞ = sin ð2
tÞ, ε2ðtÞ = t, ε3ðtÞ = t2, ε4ðtÞ = t3, C1 = 1, C2 = 2, x = 1, y = 1,
then plots of equation (54) are plotted in Figure 15.

4.4. Lump-Periodic Solutions. In this section, we would like
to present the general solutions of the including combina-
tion of two functions for the (3 + 1)-dimensional variable-
coefficient nonlinear wave equation through utilizing the
bilinear method as the below frame:

g = τ21 + τ22 + cos τ3ð Þ + ε4 tð Þ, τj
= αjx + βjy + δjz + εj t

4 t

The values αi, βi, δi, εiðtÞði = 1, 2, 3Þ are real constants to
be computed. By substituting (63) into (22), we obtain a sys-
tem containing 24 nonlinear equations. To solve the nonlin-
ear system, the determined coefficients will be got as the
below cases.

Type I

ε1 tð Þ = −
ε2 tð Þα2
α1

−
α2
α1

ð
α1

2ϕ2 tð Þ
α2

+ α2ϕ2 tð Þ dt + C1, ε3 tð Þ

= 0, ε4 tð Þ = −
α1

2 + α2
2� � Ð

ϕ2 tð Þ dt� �2α22 + ε2 tð Þð Þ2
� �

α1
2

− 2 ε2 tð Þα2
α1

2

ð
ϕ2 tð Þ α1

2 + α2
2� �

α2
dtα2 − C1α1

� �

− 2
Ð

− ϕ2 tð ÞC1α1α2
2 dt

α1
2 + C2, α3

= ϕ1 tð Þ = ϕ3 tð Þ = 0, β2 =
α2β1
α1

, δ2 =
α2δ1
α1

:

ð64Þ

ð Þ, j
= 1, 2, 3, ε

ð63Þ
ð Þ > 0:
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The solutions are given as follows:

u1 = 12 ∂2

∂x2
ln F1ð Þ, F1 = α1x + β1y + δ1z + ε1 tð Þð Þ2

+ α2x +
α2β1y
α1

+ α2δ1z
α1

+ ε2 tð Þ
� �2

+ cos β3y + δ3z + ε3 tð Þð Þ + ε4 tð Þ:

ð65Þ

From above, we can discover that g is positive if ε4ðtÞ
> 0, then in all space directions, u will be localized. There-
fore, if τ21 + τ22 + cos ðτ3Þ⟶∞, the lump solutions u⟶ 0
at any t. By selecting the parameters δ1 = 1, δ3 = 3, α1 = 2,
α2 = 4, β1 = 2, β3 = 3, ϕ2ðtÞ = −2, ε2ðtÞ = 3, C1 = 1, C2 = 2, x
= 1, y = 1, then plots of equation (65) are plotted in
Figure 16.

Type II

ε1 tð Þ =
ð

−
α1

2 + α2
2� �

α1
2ϕ2 + δ1

2ϕ4
� �

+ d/dtε2 tð Þð Þα12α2
α1

3 dt + C1, ε3 tð Þ = 0,

ε4 tð Þ =
ð
2 ε1 tð Þα2 − ε2 tð Þα1ð Þ ϕ2 tð Þα12α2 + ϕ4 tð Þα2δ12 + d/dtε2 tð Þð Þα12

� �
α1

3 dt + C2,

α3 = δ3 = ϕ1 tð Þ = ϕ3 tð Þ = 0, β2 =
α2β1
α1

, δ2 =
α2δ1
α1

:

ð66Þ

The solutions are given as follows:

u2 = 12 ∂2

∂x2
ln F2ð Þ, F2 = α1x + β1y + δ1z + ε1 tð Þð Þ2

+ α2x +
α2β1y
α1

+ α2δ1z
α1

+ ε2 tð Þ
� �2

+ cos β3y + ε3 tð Þð Þ + ε4 tð Þ:

ð67Þ
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Type III

ε1 tð Þ =
ð

− 2 δ1ϕ4 tð Þ β1δ2 − β2δ1ð Þ
α2β1

dt, ε2 tð Þ

=
ð

−
α2

2β1
2ϕ2 tð Þ + β1

2δ2
2ϕ4 tð Þ − β2

2δ1
2ϕ4 tð Þ

α2β1
2 dt,

ε3 tð Þ =
ð

− 2 δ3ϕ4 tð Þ β1δ2 − β2δ1ð Þ
α2β1

dt, ε4 tð Þ

= 0, β3 =
β1δ3
δ1

, ϕ3 tð Þ = −
δ1

2ϕ4 tð Þ
β1

2 ,

α1 = α3 = ϕ1 tð Þ = 0, β2 =
α2β1
α1

, δ2 =
α2δ1
α1

: ð68Þ

The solutions are given as follows:

u3 = 12 ∂2

∂x2
ln F3ð Þ, F3 = β1y + δ1z + ε1 tð Þð Þ2

+ α2x + β2y + δ2z + ε2 tð Þð Þ2

+ cos β1δ3y
δ1

+ δ3z + ε3 tð Þ
� �

+ ε4 tð Þ:
ð69Þ

By selecting the parameters δ1 = 1, δ2 = 2, δ3 = 3, α2 = 4,
β1 = 2, β2 = 3, ϕ2ðtÞ = sin ðtÞ, ϕ4ðtÞ = cos ðtÞ, x = 1, y = 1,
then plots of equation (69) are plotted in Figure 17.

Type IV

ε2 tð Þ = − tan α2

ð
ϕ2 tð Þ
ε1 tð Þ dt + C1

� �
ε1, ε4 tð Þ

=
ð
2 ε1 tð Þð Þ2 + ε2 tð Þð Þ2� �

α2ϕ2 tð Þε2 tð Þ − d/dtε1 tð Þð Þε1 tð Þð Þ
ε1 tð Þð Þ2 dt + C2,

ε3 tð Þ = 0, α1 = −
ε2 tð Þα2
ε1 tð Þ , α3 = β1 = β2 = δ1 = δ2

= ϕ1 tð Þ = 0, ϕ3 tð Þ = −
δ3

2ϕ4 tð Þ
β3

2 :

ð70Þ

The solutions are given as follows:

u4 = 12 ∂2

∂x2
ln F4ð Þ, F4 = −

ε2 tð Þα2x
ε1 tð Þ + ε1 tð Þ

� �2

+ α2x + ε2 tð Þð Þ2 + cos β3y + δ3z + ε3 tð Þð Þ + ε4 tð Þ:
ð71Þ

Type V

The solutions are given as follows:

Type VI

ε2 tð Þ = − tan 1
α2δ3

2

ð
α2

2δ3
2ϕ2 tð Þ − β3

2δ2
2ϕ3 tð Þ

ε1 tð Þ dt

 !
ε1 tð Þ, ε3 tð Þ =

ð
2 β3

2δ2ϕ3 tð Þ
δ3α2

dt,

ε4 tð Þ =
ð
2 ε1 tð Þð Þ2 + ε2 tð Þð Þ2� �

ϕ2 tð Þε2 tð Þα22δ32 − ϕ3 tð Þε2 tð Þβ3
2δ2

2 − d/dtε1 tð Þð Þα2δ32ε1 tð Þ� �
α2δ3

2 ε1 tð Þð Þ2 dt,

α3 = β1 = β2 = ϕ1 tð Þ = 0, α1 = −
α2ε2 tð Þ
ε1 tð Þ , δ1 = −

δ2ε2 tð Þ
ε1 tð Þ , ϕ4 tð Þ = −

β3
2ϕ3 tð Þ
δ3

2 : ð72Þ

u5 = 12 ∂2

∂x2
ln F5ð Þ, F5 = −

α2ε2 tð Þx
ε1 tð Þ −

δ2ε2 tð Þz
ε1 tð Þ + ε1 tð Þ

� �2
+ α2x + δ2z + ε2 tð Þð Þ2 + cos β3y + δ3z + ε3 tð Þð Þ + ε4 tð Þ: ð73Þ

ε3 tð Þ = 0, ε4 tð Þ = − ε1 tð Þð Þ2 − ε2 tð Þð Þ2,
α3 = β1 = β2 = ϕ1 tð Þ = ϕ3 tð Þ = 0, α1 = −

α2ε2 tð Þ
ε1 tð Þ , δ1 = −

δ2ε2 tð Þ
ε1 tð Þ , ϕ4 tð Þ = −

β3
2ϕ3 tð Þ
δ3

2 ,

ϕ4 tð Þ = −α2ϕ2 tð Þ ε1 tð Þð Þ2 + ε2 tð Þð Þ2� �
+ d/dtε1 tð Þð Þε1 tð Þε2 tð Þ − d/dtε2 tð Þð Þ ε1 tð Þð Þ2� �

α2
ε1 tð Þð Þ2 + ε2 tð Þð Þ2� �

δ2
2 : ð74Þ



The solutions are given as follows:

u6 = 12 ∂2

∂x2
ln F6ð Þ, F6 = −

α2ε2 tð Þx
ε1 tð Þ −

δ2ε2 tð Þz
ε1 tð Þ + ε1 tð Þ

� �2

+ α2x + δ2z + ε2 tð Þð Þ2 + cos β3yð Þ − ε1 tð Þð Þ2 − ε2 tð Þð Þ2:
ð75Þ

Type VII

ε1 tð Þ =
ð

−
ϕ2 tð Þ α1

2 + α2
2� �

+ d/dtε2 tð Þð Þα2
α1

dt + C1, ε3 tð Þ = 0,

ε4 tð Þ =
ð

− 2 α2ϕ2 tð Þ α1ε2 tð Þ − α2ε1 tð Þð Þ + d/dtε2 tð Þð Þ α1ε2 tð Þ − α2ε1 tð Þð Þ
α1

dt + C2,

α3 = β1 = β2 = β3 = ϕ1 tð Þ = ϕ4 tð Þ = 0, δ2 =
α2δ1
α1

: ð76Þ

The solutions are given as follows:

u7 = 12 ∂2

∂x2
ln F7ð Þ, F7 = α1x + δ1z + ε1 tð Þð Þ2

+ α2x +
α2δ1z
α1

+ ε2 tð Þ
� �2

+ cos δ3z + ε3 tð Þð Þ + ε4 tð Þ:

ð77Þ

By selecting the parameters δ1 = 2, α1 = 1, α2 = 2, β3 = 1,
ϕ2ðtÞ = t, ϕ4ðtÞ = t2, ε1ðtÞ = t, ε2ðtÞ = 1 + t, ε3ðtÞ = t2, x = 1, y
= 1, then plots of equation (77) are plotted in Figure 18. And
also, by selecting the parameters δ1 = 2, α1 = 1, α2 = 2, β3
= 1, ϕ2ðtÞ = sin ðtÞ, ϕ4ðtÞ = cos ðtÞ, ε1ðtÞ = t, ε2ðtÞ = sin ðtÞ
, ε3ðtÞ = cos ðtÞ, x = 1, y = 1, then plots of equation (77) are
plotted in Figure 19. Moreover, by selecting the parame-
ters δ1 = 2, α1 = 1, α2 = 2, β3 = 1, ϕ2ðtÞ = 1, ϕ4ðtÞ = 2, ε1ðtÞ =
t, ε2ðtÞ = t, ε3ðtÞ = t2, x = 1, y = 1, then plots of equation
(77) are plotted in Figure 20. And finally, by selecting the

parameters δ1 = 2, α1 = 1, α2 = 2, β3 = 1, ϕ2ðtÞ = exp ðtÞ, ϕ4ðtÞ
= exp ð2tÞ, ε1ðtÞ = sinh ðtÞ, ε2ðtÞ = cosh ðtÞ, ε3ðtÞ = t2, x = 1,
y = 1, then plots of equation (77) are plotted in Figure 21.

4.5. Lump-Three Kink Solutions. Here, we present lump-
periodic solutions containing combination of two functions
for the (3 + 1)-dimensional variable-coefficient nonlinear
wave equation through utilizing the bilinear method as the
below frame:

g = τ21 + τ22 + exp τ3ð Þ + exp τ4ð Þ + exp τ5ð Þ + ε6 tð Þ, τj
= αjx + βjy + δjz + εj tð Þ, j = 1, 2, 3, 4, 5, ε6 tð Þ > 0:

ð78Þ

The values αi, βi, δi, εiðtÞði = 1,⋯, 5Þ are real constants
to be computed. By appending (78) into (22), we receive a
system containing 43 nonlinear equations. To solve the non-
linear system, the determined coefficients will be got as the
below cases.

Type I

ε1 tð Þ =
ð

− 2 β5δ1ϕ3 tð Þ β2δ5 − β5δ2ð Þ
δ5

2α2
dt, ε2 tð Þ

=
ð

−
α2

2δ5
2ϕ2 tð Þ + β2

2δ5
2ϕ3 tð Þ − β5

2δ2
2ϕ3 tð Þ

δ5
2α2

dt,

ε3 tð Þ =
ð

− 2 β5δ3ϕ3 tð Þ β2δ5 − β5δ2ð Þ
δ5

2α2
dt, ε4 tð Þ

=
ð

− 2 β5δ4ϕ3 tð Þ β2δ5 − β5δ2ð Þ
δ5

2α2
dt,
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Figure 17: Plots of lump-periodic (69).



ε5 tð Þ =
ð

− 2 β5ϕ3 tð Þ β2δ5 − β5δ2ð Þ
α2δ5

dt, ε6 tð Þ

= 0, α1 = α3 = α4 = α5 = ϕ1 tð Þ = 0, β1 =
δ1β5
δ5

,

β3 =
β5δ3
δ5

, β4 =
β5δ4
δ5

, ϕ4 tð Þ = −
β5

2ϕ3 tð Þ
δ5

2 : ð79Þ

The solutions are given as follows:

u1 = 12 ∂2

∂x2
ln F1ð Þ, F1 =

δ1β5y
δ5

+ δ1z + ε1 tð Þ
� �2

+ α2x + β2y + δ2z + ε2 tð Þð Þ2 + eβ5δ3y/δ5+δ3z+ε3 tð Þ

+ eβ5δ4y/δ5+δ4z+ε4 tð Þ + eβ5y+δ5z+ε5 tð Þ + ε6 tð Þ:

ð80Þ
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Type II

The solutions are given as follows:

u2 = 12 ∂2

∂x2
ln F2ð Þ, F2 = α1x +

α1β4y
α4

+ α1δ4z
α4

+ ε1 tð Þ
� �2

+ α2x +
α2β4y
α4

+ α2δ4z
α4

+ ε2 tð Þ
� �2

+ eα3x+α3β4y/α4+α3δ4z/α4+ε3 tð Þ + eα4x+β4y+δ4z+ε4 tð Þ

+ eα5x+α5β4y/α4+α5δ4z/α4+ε5 tð Þ + ε6 tð Þ:
ð82Þ

Type III

ε1 tð Þ =
ð

−
ϕ2 tð Þ α1

2 + α2
2� �

α1
dt −

ε2 tð Þα2
α1

, ε3 tð Þ

=
ð

− α3ϕ2 tð Þ dt, ε4 tð Þ =
ð

− α4ϕ2 tð Þdt,

ε5 tð Þ =
ð

− α5ϕ2 tð Þdt, ε6 tð Þ

=
ð

− 2 α1ε2 tð Þ − α2ε1 tð Þð Þ α2ϕ2 tð Þ + d/dtε2 tð Þð Þ
α1

dt,

β2 =
α2β1
α1

, β3 =
β1δ3
δ1

, δ2 =
α2δ1
α1

, δ4 =
β4δ1
β1

, δ5

= δ1β5
β1

, ϕ1 tð Þ = 0, ϕ4 tð Þ = −
β1

2ϕ3 tð Þ
δ1

2 :

ð83Þ

The solutions are given as follows:

u3 = 12 ∂2

∂x2
ln F3ð Þ, F3 = α1x + β1y + δ1z + ε1 tð Þð Þ2

+ α2x +
α2β1y
α1

+ α2δ1z
α1

+ ε2 tð Þ
� �2

+ eα3x+β1δ3y/δ1+δ3z+ε3 tð Þ + eα4x+β4y+β4δ1z/β1+ε4 tð Þ

+ eα5x+β5y+δ1β5z/β1+ε5 tð Þ + ε6 tð Þ:

ð84Þ
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Figure 21: Plots of lump-periodic (77).

ε1 tð Þ =
ð

−
α1

2 + α2
2� �

α4
2ϕ2 tð Þ + β4

2ϕ3 tð Þ + δ4
2ϕ4 tð Þ� �

+ d/dtε2 tð Þð Þα2α42
α1α4

2 dt,

ε3 tð Þ =
ð

−
α3 α4

2ϕ2 tð Þ + β4
2ϕ3 tð Þ + δ4

2ϕ4 tð Þ� �
α4

2 dt, ε4 tð Þ =
ð

−
α4

2ϕ2 tð Þ + β4
2ϕ3 tð Þ + δ4

2ϕ4 tð Þ
α4

dt,

ε5 tð Þ =
ð

−
α5 α4

2ϕ2 tð Þ + β4
2ϕ3 tð Þ + δ4

2ϕ4 tð Þ� �
α4

2 dt, ϕ1 tð Þ = 0, βi =
αiβ4
α4

, δi =
αiδ4
α4

, i = 1, 2, 3, 5,

ε6 tð Þ =
ð

− 2 α2 α4
2ϕ2 tð Þ + β4

2ϕ3 tð Þ + δ4
2ϕ4 tð Þ� �

α1ε2 tð Þ − α2ε1 tð Þð Þ + d/dtε2 tð Þð Þα42 α1ε2 tð Þ − α2ε1 tð Þð Þ
α1α4

2 dt:

ð81Þ



From above, we can discover that g is positive if ε6
ðtÞ > 0, then in all space directions u will be localized.
Therefore, if τ21 + τ22 + exp ðτ3Þ + exp ðτ4Þ + exp ðτ5Þ + ε6ðtÞ
⟶∞, the lump-three kink solutions

u⇒

−12α23, α3 > α4 > α5,
0, α4 > α3 > α3,
0, α5 > α3 > α4,
0, α4 > α5 > α3,

8>>>>><
>>>>>:

ð85Þ

at any t. By selecting the parameters α1 = 1, α2 = 2, α3 =
3, α4 = 4, α5 = 5, β1 = 1, β4 = 3, β5 = 4, δ1 = 1, δ3 = 1:5, ϕ2ðtÞ
= cos ðtÞ, ε1ðtÞ = sin ð2tÞ, ε2ðtÞ = cos ð2tÞ, x = 1, y = 1, then
plots of equation (84) are plotted in Figure 22. And
also, via selecting the parameters α1 = 1, α2 = 2, α3 = 3, α4
= 4, α5 = 5, β1 = 1, β4 = 3, β5 = 4, δ1 = 1, δ3 = 1:5, ϕ2ðtÞ = 1 +
t + t2, ε1ðtÞ = 1/2ð1 + tÞ2, ε2ðtÞ = 1/3ð1 + tÞ3, x = 1, y = 1,
then plots of equation (84) are plotted in Figure 23.

Type IV

The solutions are given as follows:

u4 = 12 ∂2

∂x2
ln F4ð Þ, F4 = α1x + δ1z + ε1 tð Þð Þ2

+ α2x +
α2δ1z
α1

+ ε2 tð Þ
� �2

+ eα3x+ α1δ3−α3δ1ð Þβ4y/δ4α1+δ3z+ε3 tð Þ

+ eβ4y+δ4z+ε4 tð Þ + eα5x+β4 α1δ5−α5δ1ð Þy/δ4α1+δ5z+ε5 tð Þ + ε6 tð Þ:
ð87Þ

By selecting the parameters α1 = 1, α2 = 2, α3 = 3, α5 = 5,
β4 = 3, δ1 = 1, δ3 = 1:5, δ4 = 2, δ5 = 3, ϕ2ðtÞ = t, ϕ3ðtÞ = t2, ε2
ðtÞ = t4, x = 1, y = 1, then plots of equation (87) are plotted in
Figure 24. And also, via selecting the parameters α1 = 1, α2
= 2, α3 = 3, α5 = 5, β4 = 3, δ1 = 1, δ3 = 1:5, δ4 = 2, δ5 = 3, ϕ2
ðtÞ = 1, ϕ3ðtÞ = 2, ε2ðtÞ = 3, x = 1, y = 1, then plots of equa-
tion (87) are plotted in Figure 25. Moreover, via selecting
the parameters α1 = 1, α2 = 2, α3 = 3, α5 = 5, β4 = 3, δ1 = 1, δ3
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Figure 22: Plots of lump-three kink solutions (84).

ε1 tð Þ =
ð

−
α1

2 + α2
2� �

α1
2δ4

2ϕ2 tð Þ − β4
2δ1

2ϕ3 tð Þ� �
α1

3δ4
2 dt −

ε2 tð Þα2
α1

, ε4 tð Þ =
ð
2β4

2ϕ3 tð Þδ1
α1δ4

dt,

ε3 tð Þ =
ð

−
α1

2α3δ4
2ϕ2 tð Þ − β4

2δ1ϕ3 tð Þ 2 α1δ3 − α3δ1ð Þ
α1

2δ4
2 dt, ε5 tð Þ =

ð
−
α1

2α5δ4
2ϕ2 tð Þ − β4

2δ1ϕ3 tð Þ 2 α1δ5 − α5δ1ð Þ
α1

2δ4
2 dt,

ε6 tð Þ =
ð

− 2 α1ε2 tð Þ − α2ε1 tð Þð Þ ϕ2 tð Þα12α2δ42 − ϕ3 tð Þα2β4
2δ1

2 + d/dtε2 tð Þð Þα12δ42
� �

α1
3δ4

2 dt, β3 =
α1δ3 − α3δ1ð Þβ4

α1δ4
,

β5 =
β4 α1δ5 − α5δ1ð Þ

α1δ4
, δ2 =

α2δ1
α1

, ϕ4 tð Þ = −
β4

2ϕ3 tð Þ
δ4

2 , α4 = β1 = β2 = ϕ1 tð Þ = 0:

ð86Þ
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= 1:5, δ4 = 2, δ5 = 3, ϕ2ðtÞ = sin ð3tÞ, ϕ3ðtÞ = cos ð3tÞ, ε2ðtÞ
= sin ðtÞ + cos ðtÞ, x = 1, y = 1, then plots of equation (87)
are plotted in Figure 26.

5. Conclusion

In this paper, under the multidimensional binary Bell poly-
nomials, we derive that the lump-soliton and its interaction
solutions of the (3 + 1)-dimensional variable-coefficient
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