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Article 1 

Polymer Film Blend of Polyvinyl Alcohol, Trichloroethylene 2 

and Cresol Red for Gamma Radiation Dosimetry 3 

Aris Doyan1,2,*, Susilawati Susilawati 1,2,*, Saiful Prayogi 3, Muhammad Roil Bilad 3, Muhamad F. Arif 4, Noor 4 

Maizura Ismail 5 5 

1 Master of Science Education Program, University of Mataram, Jl. Majapahit No. 62 Mataram 83125, Indone- 6 
sia; aris_doyan@unram.ac.id (A.D.); susilawatihambali@unram.ac.id (S.S) 7 

2 Physics Education, FKIP, University of Mataram, Jl. Majapahit No. 62 Mataram 83125, Indonesia 8 
3 Faculty of Applied Science and Enginering, Universitas Pendidikan Mandalika UNDIKMA, Jl. Pemuda No. 9 

59A, Mataram 83126, Indonesia; saifulprayogi@ikipmataram.ac.id (S.P.); muhammadroilbilad@ ikipmata- 10 
ram.ac.id (M.R.B.) 11 

4 Department of Materials Engineering, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia; 12 
mf.arif@mt.itera.ac.id (M.F.A.) 13 

5 Faculty of Engineering, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; 14 
maizura@ums.edu.my (N.M.I.) 15 

* Correspondence: aris_doyan@unram.ac.id (A.D.); susilawatihambali@unram.ac.id (S.S) 16 

Abstract: This study investigated polymer film composite of polyvinyl alcohol (PVA), trichloreth- 17 
ylene (TCE) and cresol red (CR) dye irradiated with gamma () rays for potential application as 18 
dosimeter. The film was prepared via the solvent-casting method with varying concentrations of 19 
TCE. Film samples were exposed to radiation from a -rays radiation source of 60Cobalt isotope. 20 
Color changes before and after -rays irradiation were observed, and the optical properties of the 21 
polymer films were investigated by spectrophotometry. Results show that increasing the radiation 22 
dose physically changed the color of the polymer film, from purple (pH> 8.8) without radiation (0 23 
kGy) to yellow (almost transparent) (2.8 <pH <7.2) at the highest dose (12 kGy). The concentration 24 
of acid formed due to irradiation increased with the increase in irradiation doses and at higher TCE 25 
content. The critical doses of PVA-TCE composites decreased linearly with the increase of TCE com- 26 
position facilitating an easy calibration process. The dose response at 438 nm increased exponen- 27 
tially with increasing radiation dose, but showed opposite trend at the 575 nm band. An increase in 28 
the TCA concentration indicated a decrease in the absorption edge and an increase in activation 29 
energy, but both decreased for all TCE concentrations at higher doses. The energy gap for the direct 30 
and the indirect transitions decreased with increasing TCE concentration and -rays radiation dose. 31 
The results of this study demonstrated the potential application of PVA-TCE-CR polymer film as - 32 
rays irradiation dosimetry in a useful dose range of 0-12 kGy.  33 

Keywords: optical properties, polymer film composite, -rays irradiation, dosimetry 34 

 35 

1. Introduction 36 

Dosimeters from various materials have been intensively studied as devices to mon- 37 

itor radiation doses [1]. Dosimeters of colored thin film polymer materials have been ex- 38 

tensively developed for measuring the adsorbed radiation dose by materials, and have 39 

been applied in routine dosimeters [2]. The main technical advantage of a polymer film- 40 

based dosimeter as a radiation detector is its slightness and portability [3]. In addition, 41 

the film has a long storage stability, sturdy, and cost-effective [4]. Some of the applications 42 

of film dosimeters include: routine high-dose radiation to food and beverages [5]; sterili- 43 

zation process [6]; radiotherapy in medical field [7]; and dye dosimeters [8–10].  44 

Radiation dosimeter is used to measure radiation dose exposed to a material by ion- 45 

izing radiation [11]. Therefore, it is necessary to ensure the accuracy of the radiation dose 46 
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[12,13]. Many materials have been developed and explored as radiation dosimeter, eval- 47 

uated under different dose ranges [14–16]. A film dosimeter can be developed from a mix- 48 

ture of polymer and a dye as indicator. The polymer materials that have been explored 49 

include polyvinyl alcohol (PVA) [5,13]; polycarbonate [17]; polyvinyl chloride [18]; and 50 

polyvinyl butyric [14]. Meanwhile, coloring materials as indicators include: methylene 51 

blue and methylene red  [4]; thymolphthalein (TP) [5]; ethyl violet and blue bromophenol 52 

[19]; cresol red (CR) [20]; tetrazolium violet [21]; and methyl viologen [22].  53 

PVA based polymer materials are most recommended because it has a high degree 54 

of flexibility [23], water-soluble [24], good mechanical properties [25], non-toxic and elas- 55 

tic [26]. PVA has been combined with several mixed dyes (tetrabromo phenolphthalein 56 

ethyl ester, acid yellow, and chloral hydrate) and has shown promising prospect for new 57 

dosimeters in 0.1 to 5 kGy dose range [1]. PVA with TP dye is effective as a new detector 58 

system for application at doses of 1 to 6.5 kGy [5], and PVA with methyl thymol blue dye 59 

showed some efficacy under a dose range from 2.5 to 20 kGy [11].  60 

Several blends of chlorine containing polymer have been investigated for possible 61 

use as dosimetry of -rays radiation and electron beam [27,28]. They also contained dye 62 

as pH indicators and the presence of chlorine improve the water solubility. For instance, 63 

a mixture dehydrochlorines and an acid has a low pH. The low pH increased its sensitivity 64 

of the dye component to change color.  65 

In this study, we explored the potential of PVA blended with trichlorethylene (TCE) 66 

and CR dye as a dosimeter. The addition of a TCE that contains chlorine is expected to 67 

enhance the solubility and stabilize the pH [29], as well as increases the dye sensitivity 68 

[30]. TCE is also found to be an electro-catalyst in polymers [31]. In order to be applied as 69 

a radiation dosimeter, the optical properties of the PVA-TCE-CR polymer film need to be 70 

further explored. In this study, we investigated the optical characteristics of the PVA-TCE 71 

polymer film with CR dye and irradiated by -rays at doses of 0 to 12 kGy. Several samples 72 

with TCE variations (20, 25, 30, and 35%) were fabricated and characterized. 73 

2. Materials and Methods 74 

2.1 Polymer Film Preparation 75 

Polymer films composite were prepared from the following components: PVA, TCE, 76 

CR dye, and color thinners (ethanol and NaOH). The film from the mixture was prepared 77 

using the solvent-casting method. A stock dye solution of the polymer film was prepared 78 

by mixing CR 0.08 g (SDS for 105225, Merck, Germany) with 50 ml of ethanol (96% tech- 79 

nical, Merck), and 10% NaOH (Merck). The mixture was then stirred for 10 minutes at 80 

room temperature until homogeneous. The prepared CR dye solution was placed in a 81 

closed container (bottle) at room temperature of 25 0C until further use. 82 

The polymer film was prepared by dissolving 17.5 g PVA (Mw = 72,000 g/mol, Sigma- 83 

Aldrich) with 350 ml distilled water in a beaker. This mixture was heated at 80 0C while 84 

stirring using a magnetic stirrer at 150 RPM in an open container (to allow evaporation)for 85 

4 hours until the remaining volume of solution was 50 ml. In this condition, TCE (Mw = 86 

131.39 g/mol, from Sigma-Aldric) was added to the mixture while stirring for 1 hour. The 87 

concentration of TCE were varied at 20, 25, 30, and 35%. Afterward, the temperature was 88 

lowered to 25 0C, then the mixture was added with the stock CR dye solution. The mixture 89 

was then continuously stirred for about 20 mins until homogeneous.  90 

The homogeneous PVA-TCE-CR solution was poured on a glass plate and spread 91 

evenly to form a thin film. The cast film was then left to stand for drying process for 120 92 

hours at a room temperature of 250C. Under this condition, a solid polymer film was 93 

formed by a mixture of PVA-TCE-CR. After solidification, the polymer film was cut into 94 

a size of 2 × 2 cm and stored in a special container ampoule to protect it from dirt and sun 95 

exposure under a room temperature. The average thickness of the resulting polymer films 96 

was 75  1 m, measured using a digital micrometer (Mitutoyo, Japan). 97 

2.2 Polymer Film Irradiation 98 
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The polymer film was irradiated with -rays (Gamma Irradiator ISG-500), sourced 99 

from 60Co pencil types (C 188-Nordion, Canada) with an activity of 2x250 kCi and an av- 100 

erage -energy of 1.25 MeV. A total of 48 polymer film samples of four TCE concentrations 101 

(20, 25, 30, and 35%) were irradiated under different doses of 1 to 12 kGy at room temper- 102 

ature. As benchmarks, four samples of the polymer film were not irradiated (0 kGy) for 103 

each TCE concentration. The physical changes in the color of the film with or without 104 

irradiation was compared. 105 

2.3 Optical Properties Analysis 106 

Measurement of the optical absorption of polymer films under all radiation doses 107 

and concentrations was done using a UV-Vis spectrophotometer (UV-1900i from Shi- 108 

madzu, USA, WL range: 190-1100 nm, WA: +/- 0.1-nm). The scanning was done over a 109 

wavelength range of 300 to 700 nm. The optical absorption characteristics were plotted in 110 

the form of a graph to show wavelength vs absorbance relationships. Measurements were 111 

made on each film sample that had been irradiated by -rays with four variations of TCA 112 

concentrations (20, 25, 30, and 35%). The formation of acid in film composites, critical dose 113 

at color change, optical absorption dose response, absorption edge (AE), activation energy 114 

(ΔE), and energy gap (Eg) were then evaluated. The absorption edge and activation en- 115 

ergy were determined according to the Urbach-edges method [32], and the optical energy 116 

gap was determined according to the Mott and Davis model [33]. 117 

3. Results and Discussion 118 

3.1 Discoloration of the polymer film before and after radiation 119 

The color of the PVA-TCE-CR polymer film samples before and after -rays irradia- 120 

tion experienced significant changes as shown in Figure 1. Increasing the dose of -rays 121 

irradiation physically changes the color of the polymer film samples, from purple (pH> 122 

8.8) without radiation (0 kGy) to yellow (leading to transparency) (2.8 <pH <7.2) at the 123 

highest dose (12 kGy). The findings show that exposure to -rays energy at different doses 124 

changed the color of the film, in which the dose played important effect. The change of 125 

color was consistent for all variations of TCE concentrations. The decrease of the sample 126 

pH was caused by the presence of acids resulted from the interaction of gamma rays with 127 

water molecules and TCE.  128 

The change in colour can be ascribed due to decrease in the samples pH caused by 129 

the presence of acid generated from interaction of -rays with water molecules and TCE, 130 

a chlorine containing substance. There was no colour change for the dyed PVA films pre- 131 

pared without TCE added (for one concentration), even though it was irradiated to 12 132 

kGy. This suggests that only TCE molecules of the PVA-TCE composites were affected by 133 

-rays irradiation within the applied doses range. Another study reported that the poly- 134 

mer film of PVA-chloral hydrate- TPBE-AY dyes irradiated by gamma rays produced col- 135 

ors from green to yellow to red due to a decrease in pH that occurred due to HCl produced 136 

from chloral radiolysis [1]. 137 

 138 

 139 
Figure 1. Appearance of the polymer film sample with 20% TCE after radiation with doses of (a) 0 140 
kGy; (b) 2 kGy; (c) 4 kGy; (d) 6 kGy; and (e) 12 kGy.  141 

 142 

The impact of irradiation on colour changes found in this study is consistent with 143 

previous reports for different polymer film components. Previous studies showed that the 144 

blue color intensity of the polymer film mixture of methyl thymol blue and PVA decreased 145 
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gradually with the increase in the -rays radiation dose. The color transition was at- 146 

tributed to the formation of a large number of free radicals due to radiation exposure 147 

which gradually increased the rate of blue color reduction in the polymer film samples 148 

[11]. The -rays interactions produced hydrated electrons and free radicals that damage 149 

the dye material molecules and removed chromophores [34,35]. Increasing the radiation 150 

dose also led to a gradual bleaching of the polymer samples, as reported elsewhere [36]. 151 

In another report, the chlorine bonding of the mixed film polymer was dehydrochlorin- 152 

ated due to -rays irradiation, which increased the chlorine ion in the film [30].  153 

3.2 Absorption Spectra 154 

Figure 2 shows the absorption spectrum of the polymer blend film with TCE compo- 155 

sition at 20, 25, 30 and 35%. The absorption spectrum of the PVA-TCE-CR composites 156 

were measured before and after -irradiation with variable doses (0 to 12 kGy). Two ab- 157 

sorption peaks at 438 and 575 nm bands were found to be consistent for all tested samples. 158 

A band at 575 nm served as the main absorbance peak of the purple color characteristic of 159 

the PVA-TCE-CR polymer film composite. At 20% TCE, films with a radiation dose of 0 160 

kGy (unirradiated) to the one irradiated with 9 kGy maintained the main absorption peak 161 

at 575 nm. However, the main absorbance peak of polymer films irradiated with 10, 11 162 

and 12 kGy shifted from 575 nm to 438 nm. The peak shifting for TCE concentration of 163 

25%, 30 and 35% occurred for irradiation doses of 9, 10, 11 and 12; 8, 9, 10, 11 and 12; 7, 8, 164 

9, 10, 11 and 12 kGy, respectively.   165 

 166 

  

    (a)     (b) 

  
    (c)      (d) 

Figure 2. Absorbance spectra of CR dyed PVA-TCE composites containing; (a) 20%; (b) 25%; (c) 30%; 167 
and (d) 35 % TCE irradiated with -rays at various doses. 168 

The absorption spectra of the unirradiated films show a main absorption peak at 169 

575 nm band (a characteristic of observed purple colour). Upon irradiation, the absorb- 170 

ance at 575 nm band decreased gradually while at the absorption peak of 438-nm band (a 171 

characteristic of observed yellow colour) emerged with increasing intensity at higher 172 

doses.  173 
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These results are consistent with the results of previous studies on composite poly- 174 

mer film PVA-trichloroacetid acid (PVA-TCA) which produced the same absorption 175 

bands (575 and 438 nm) as expected for most organic compounds containing chlorine [30]. 176 

However, they have a different dose response. For a given absorption dose, the absorb- 177 

ance of PVA-TCE composites in the 575 nm band was higher than that of the PVA-TCA 178 

composites, but for the 438 nm band, it was higher for the PVA-TCA composites than for 179 

the PVA-TCE composites. This difference may be due to various factors such as sample 180 

thickness, dose sensitivity, and the concentration of acid formed in the two sample sys- 181 

tems.  182 

The colorimetric property associated with the change in the optical absorption peak 183 

due to gamma radiation on a film is an important aspect in radiation dosimetry. In this 184 

study, we identified highly visible results within 1 to 12 kGy dose range that enable the 185 

polymer film materials to be used in many dosimetry applications. At low doses (<5 kGy), 186 

the film can be used as a dosimetry label or indicator for food irradiation processing, med- 187 

ical product sterilization, and polymer modification [1], while for high doses (>6 kGy), it 188 

can be applied to various control processes in industrial radiation facilities [13]. 189 

3.3 Formation of Acid in PVA-TCE composites 190 

Figure 3 shows the concentration of acid formed in the PVA-TCE samples containing 191 

different TCE compositions as a function of absorbed dose. It could be seen that the con- 192 

centration of acid formed increased with the increase in the irradiation dose and the TCE 193 

content. Upon irradiation, the TCE in the polymer film was dechlorinated, in which chlo- 194 

rine ions detached from the carbon backbone of TCE. Thus, the excited TCE dissociated 195 

to radicals, which may be represented by equation (1).  196 

C 2HCl3*   →    
.

22HClC   + 
.

Cl  (1) 197 

The radicals of hydrogen H* and hydroxyl OH* from hydrolysis of water, and Cl* 198 

from TCE recombined to form other chemical products including hydrochloric acid.  199 

Figure 3 shows the concentration of acid formed in the PVA-TCE-CR polymer film 200 

composites during irradiation with -rays. It can be seen that the acid concentration was 201 

dependent on the dose and the composition and type of blend added. The acid formed 202 

increased with increasing TCE concentration from 20 to 35% and radiation dose up to 12 203 

kGy. 204 

  205 

 206 

Figure 3. Concentration of acid formed as function of dose in PVA-TCE-CR polymer films with 207 
different compositions of TCE derived from the absorbance at 438 nm. 208 

Similar finding on acidification of irradiated polymer film was also reported in earlier 209 

studies. For a single carbon bond (C-C) containing compound in PVA-chloral hydrate 210 

composite, the acid concentration at dose 12 kGy reached 1.0 mol L-1 for 34% CH [37], 211 

while at the same radiation dose reached of 0.18 mol L-1 for 35% TCA (in PVA-composite) 212 
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[30]. However, the acid formed in a double carbon bond (C=C) containing compound like 213 

PVA-TCE composites, the acid formed was much smaller of 0.015 mol L-1 for 20% TCE 214 

and 0.022 mol L-1 for 35% TCE when irradiated at the dose 12 kGy. The increasing trend 215 

can be attributed to more energy of the photon required to break a covalent bond involv- 216 

ing C=C compound. It follows that the amount of acid formed and the subsequent chem- 217 

ical and physical effects of irradiated PVA composites was influenced by the type of car- 218 

bon bond of the compounds. 219 

3.4 Critical Dose at Color Change 220 

The shift of the main absorption bands from 575 nm to 438 as the results of -rays 221 

irradiation on the film occurred at a certain dose point, called as critical dose, has been 222 

shown in Figure 2. In Figure 4, the critical dose of each tested TCE concentration is pre- 223 

sented by evaluating the intersection of absorption curves at 438 and 575 nm bands for 224 

each TCE composition. The dose at this intersection was taken as the critical dose (DC) at 225 

which the polymer film changed colour from more purple/violet to more yellow (Figure 226 

1). Figure 4 also shows the useful critical dose as a function of TCE composition. The val- 227 

ues obtained from 20%, 25%, 30%, and 35% TCE were ranged at 8 to 9 kGy, 7 to 8 kGy, 7 228 

kGy, and 6 kGy, respectively. 229 

 230 

 

 

    (a)   (b) 

  

    (c)      (d) 

Figure 4. Critical doses determined as the intersection of absorbance at 575 nm and 438 nm bands 231 
for PVA-TCE-CR polymer film containing (a) 20%, (b) 25%, (c) 30%, and (d) 35% TCE. 232 

Figure 5 shows critical doses as a function of TCE composition for PVA-TCE-CR pol- 233 

ymer film. The critical dose decreases linearly with the increase of TCE composition and 234 

has a relationship given by DC = -0.18C + 12.35 (r = 0.99), where C is the composition of 235 

TCE. It shows that he critical dose of polymer film composites decreases linearly with 236 

increasing TCE compositions.  237 



Polymers 2021, 13, x FOR PEER REVIEW 7 of 16 
 

 

 238 

Figure 5. Useful critical doses as a function of TCE concentration for PVA-TCE-CR polymer films. 239 

 240 

3.5 Optical Absorption Dose Response  241 

The radiation dose response for each absorption band was evaluated as function of 242 

TCE content in the PVA-TCE-CR polymer films. The dose-response curves at 438 nm in- 243 

creased exponentially with dose as shown in Figure 6(a). The data fitted well with a math- 244 

ematical model of 0/

0

DDeyy = . The dose sensitivity parameter D0 obtained had a func- 245 

tion of D0 = 0.012C + 7.8311, where C is the composition of TCE, as shown in Figure 6(b).  246 

For the dose-response curves at 575-nm band, which decreased exponentially with 247 

dose, a mathematical model of 0/

0

DDeyy −
= was used (Figure 6c). The results show that 248 

D0 had the relationship of D0 = 0.0098C + 3.6174, where C is the composition of TCE, as 249 

shown in Figure 6(d). Since, D0 showed a linear relationship with the TCE composition, 250 

the dose response of the film is thus desirable for ease of calibration and interpretation as 251 

a radiation dosimeter. 252 

 253 

  
   (a)    (b) 

 

 

   (c)     (d) 

Figure 6. Optical absorption dose response; (a) dose response curve at 438 nm band; (b) Sensitive 254 
dose D0 vs TCE composition as derived from 438 nm band; (c) Dose response curve at 575 nm band; 255 
(d) Sensitive dose D0 as a function of TCE composition as derived from 575 nm band. 256 
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3.6 Absorption Edge  257 

The absorption of UV spectra increases with increasing dose, as shown in Figure 7. 258 

This band corresponded to the excitation of outer electrons attributed to the *−  elec- 259 

tronic transitions of electrons from donor atoms (HOMO) to acceptor atoms (LUMO) of 260 

the film. The absorption coefficient, α(v), of dyed PVA-TCE film was determined from the 261 

optical absorption spectrum. The plots of α(v) vs hv at different doses are shown in Figure 262 

7 for different TCE compositions. Near the absorption edge, α increased more rapidly 263 

with hv. The absorption edge was determined by extrapolating the linear portions of α(v) 264 

vs hv curves to zero value of the absorption coefficient.  265 

 266 

  
      (a)                     (b) 

 

 

      (c)      (d) 

Figure 7. Relationship between α(v) vs hv under different doses for; (a) 20%; (b) 25%; (c) 30%; and 267 
(d) 35% of TCE content in PVA-TCE-CR polymer film.  268 

The absorption edge decreased with increasing TCE composition and increasing dose 269 

as shown in Figure 8. The absorption edge of dyed PVA-TCE film decreased for 20% TCE 270 

from 4.88 to 4.72 eV when the dose increased from 0 to 12 kGy. For the same radiation 271 

condition, it decreases from 4.63 to 4.44 eV for 35% TCE. When comparing with literature 272 

data, at about the same blend composition, the absorption edge of the PVA-CH film was 273 

higher than that the PVA-TCE film [37], followed by the PVA-TCA film [30]. Overall, the 274 

absorption edge of irradiated PVA-TCE composites was higher than that of the UPVC 275 

(4.35 to 2.04 eV) [38].  276 
 277 
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 278 

Figure 8. Absorption edge of PVA-TCE-CR polymer films as a function of dose for different TCE 279 
compositions. 280 

For pure PVA film, the absorption edge was found to be around 5.34 eV [39]. In the 281 

present study, this value was reduced by 0.9 eV, under 35% PVA-TCE and a dose of 12 282 

kGy to about 4.44 eV. A greater trend of decreasing absorption edge with increasing radi- 283 

ation dose was also found in polymer films blended with salts, such as PVA-AgNO3 pol- 284 

ymer film irradiated with gamma rays at high doses. At doses of 20 to 50 kGy, it produced 285 

an absorption edge of 1.43. to 0.96 eV [40].  286 

 287 

3.7 Activation Energy  288 

The optical activation energy was evaluated using the Urbach-edges method [32]. 289 

The activation energy of irradiated samples were determined from the slope of the straight 290 

line of ln() versus photon energy hv for different TCE compositions (Figure 9). The acti- 291 

vation energy in a reaction is defined as the amount of energy required to start a reaction. 292 

This represents the minimum energy required to form a complex motion in the event of a 293 

collision between reagents [41]. 294 

 295 

 

 

   (a)  (b) 

 

 

   (c)   (d) 
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Figure 9. Variation of ln() vs. h at various doses for; (a) 20%; (b) 25%; (c) 30%; and (d) 35% TCE 296 
composition of CR dyed PVA-TCE composites. 297 

From the results shown in Figure 10, it can be seen that activation energy decreased 298 

with the increase of the radiation dose as well as TCE concentration. It was found that the 299 

activation energy value at 0 Gy increased from 0.66 eV for the 20% TCE to 0.72 eV for the 300 

35% TCE. At 12 kGy, the value increases from 0.49 eV for the 20% TCE to 0.65 eV for the 301 

35% TCE. Therefore, activation energy increased with the increase of the TCE composition 302 

and decreased at higher doses. These findings are supported by the results of previous 303 

studies that the activation energy decreased with increasing dose of -rays irradiation [30], 304 

as a result of chain-scission polymeric molecules in polymer samples [42]. Evaluation of 305 

previous studies revealed that activation energy values of PVA-TCE composites were 306 

higher than that of PVA-TCA composites for all tested compositions and doses [30]. This 307 

finding suggests that radiation dose affected significantly the change of the width of the 308 

tail of the localized states of the energy band.  309 

 310 

Figure 10. Effect of -rays irradiation and TCE composition on the optical activation energy (ΔE) of 311 
CR dyed PVA-TCE composites. 312 

 313 

3.8 Band Gap Energy 314 

Figure 11 shows extrapolation (hν)m versus hν that resulted in a variation energy 315 

gap for each radiation dose and concentration.. Energy gap was determined according to 316 

the Mott and Davis’ model [33]. Band gap energy or energy gap is the energy range in the 317 

absence of electrons from a material, it lies between the valence and conduction bands 318 

[43]. Enough energy is required to make the transition of these two bands [44]. Optical 319 

absorption spectrum analysis can be used to determine the optical energy gap between 320 

the valence band and the conduction band due to direct and indirect transitions [45,46]. 321 

The direct optical band gaps in UV region were evaluated from (αhv)2 versus hv at differ- 322 

ent doses as illustrated in Figure 11. 323 

Figure 12 summarizes the relationship between the optical band gaps and dose at 324 

different TCE compositions. The results show that the direct energy gap decreased with 325 

increasing doses for all TCE compositions. It was found that energy gap at 0 Gy decreased 326 

from 5.21 eV for the 20% TCE to 5.07 eV for the 35% TCE. At 12 kGy, the value decreased 327 

from 5.04 eV for the 20% TCE to 4.90 eV for the 35% TCE. The energy gap value of the 328 

PVA-TCE film was slightly smaller than that of the PVA-TCA films under all doses [30].  329 

 330 

 331 
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      (a)      (b) 

  

       (c)        (d) 

Figure 11. Variation of direct allowed transition (αhv)2 vs hv at various doses for PVA-TCE-CR pol- 332 
ymer film at; (a) 20%; (b) 25%; (c) 30%; and (d) 35% TCE composition. 333 

 334 

 335 

Figure 12. Variation of the direct energy band gaps with dose for PVA-TCE-CT polymer films at 336 
different TCE compositions. 337 

The indirect optical band gap energy of UV region was evaluated from the linear 338 

plots of (αhv)1/2 vs. hv under different doses as illustrated in Figure 13. The extrapolation 339 

for which (αhv)1/2 = 0 yielded the indirect optical band gap, which was a function of dose 340 

as illustrated in Figure 14. The indirect band gap decreased with the increase of dose for 341 

all TCE compositions. It had similar features to that of the direct band gap, but the value 342 

of the indirect band gap energy was always smaller. It was found that at 0 Gy, the indirect 343 

energy gap decreased from 4.96 eV for the 20% TCE to 4.62 eV for the 35% TCE. At 12 344 

kGy, the value decreased from 4.74 eV for the 20% TCE to 4.23 eV for the 35% TCE. It was 345 

found also that the indirect band gap of the PVA-TCE composites was larger than that of 346 

the PVA-TCA composites [30], for the same compositions and doses. The decrease in the 347 

band gap resulted from the increase in polarons and free ions in the polymer sample due 348 

to exposure to the -rays irradiation, as explained elsewhere [44,47]. 349 
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 350 

  

     (a)      (b) 

  

     (c)      (d) 

Figure 13. Variation of indirect allowed transition (αhv)1/2 vs hv at various doses PVA-TCE-CT pol- 351 
ymer films at; (a) 20%; (b) 25%; (c) 30%; and (d) 35% TCE composition. 352 

 353 

 354 
Figure 13. Variation of the indirect energy band gaps with dose for CR dyed PVA-TCE films at 355 
different TCE compositions. 356 

 357 

Overall results suggest that the amount of energy gap in the irradiated polymer ma- 358 

terial depends on the type and composition of the dopants under the influence of -rays 359 

irradiation. The response of the optical properties of the material to the radiation dose is 360 

very important to be investigated. The results of previous studies showed a linear re- 361 

sponse of decreasing energy gap to -rays irradiation on TeO2 thin films observed in the 362 

dose range 0 to 37 Gy, which resulted in energy gap in the range of 3.75 to 345 eV [48]. 363 

The linear response decreased the energy gap to 4.16 and 4.34 eV for KCl-Mn and KCl-Ce 364 

phosphore polymer materials irradiated with -rays at doses of 0.08 to 0.75 kGy [49].   365 

The behavior of the optical properties of the studied material specimen under the 366 

influence of radiation dose is important to identify its potential application in radiation 367 

dosimetry systems. They usually show varying responses to the dose exposed to the ma- 368 

terial, such as linear, supralinear, saturated response, and defective with increasing radi- 369 

ation dose [50]. In the present work, the energy gap for both types of transitions (direct 370 
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and indirect) showed a linear decreasing response to radiation dose. Linearity indicated 371 

that the material has stable optical properties which can be used as a promising dosimetry 372 

[48,49].  373 

4. Conclusions 374 

The PVA-TCE-CR polymer film composite has been introduced for -rays irradiation 375 

dosimetry system applications. The study of its optical properties was explored before 376 

and after -rays irradiation. Results show that increasing the radiation dose physically 377 

changed the color of the polymer film, from purple (pH> 8.8) without radiation (0 kGy) to 378 

yellow (almost transparent) (2.8 <pH <7.2) at the highest dose (12 kGy). The concentration 379 

of acid formed increased with the increase in dose and the composition of TCE. The critical 380 

doses of film composites decreased linearly with the increase of TCE compositions. The 381 

dose response at 438 nm increased exponentially with increasing radiation dose. Con- 382 

versely, the dose response at the 575 nm band decreased with increasing radiation dose. 383 

An increase in the TCA concentration indicated a decrease in the absorption edge and an 384 

increase in activation energy, but both decreased for all TCE concentrations at higher 385 

doses. The energy gap for the direct and the indirect transitions decreased with increasing 386 

TCE concentration and -rays radiation dose. The results of this study indicated the po- 387 

tential application of PVA-TCE-CR polymer film as -rays irradiation dosimetry in a use- 388 

ful dose range of 0-12 kGy. 389 
 390 

 391 
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REV#1 

The authors of polymers-1183371 manuscript examine a PVA-TCE-CR polymer film as gamma ray 

radiation dosimeter. The thin film has been syntesized with different TCE concentrations and was 

irradiated with a Co60 source. I find the manuscript well written and of interest to readers associated 

with optical dosimetry. Below are my comments that I feel will improve the submitted manuscript. 

Comment 1, lines 45-46. I propose the definition of dosimeter to be changed as " Radiation dosimetry 

is used to measure the absorbed radiation dose, or determine the incident radiation on a material". 

Please have in mind that the term 'dose' implies absorbed radiation, although the instruments 

measuring incident radiation ale also called dose meters. 

Comment 2, line 54. Please change "it has" to "they have". I believe you are discussing about the 

materials. 

Comment 3, Line 101. Please also wright the two energy peaks of Co60 

Comment 4, Line 101. Please state how have you calculated the Co60 doses 1-12 kGy. Did you use an 

additional instrument or by knowledge of Co60 gamma factor, distance, activity and irradiation time? 

In the latter case please right some lines regarding the irradiation setup   

Comment 5, lines 120-124 and Figures 4-6. What is the "experimentally dose resolution" of the 

method? I mean, can you experimentally determine color differences at 0.2 kGy dose change, or the 

choise of the 2KGy dose steps are mandatory so as the calibration plots shown in figures 4 to 6 can be 

constructed and the small doses can be mathematically obtained by data interpolation? 

Comment 6, Figure 2. Please keep the color fixed for every curve of the same dose for all TCE 

concentrations. For example 0 kGy should be yellow through figures 2a-2d, 2kGy should be blue 

through figures 2a-2d, etc. In this way the reader could be more easilly compare the curves. 

Comment 7, lines 186-189. Since you have not tested the energy response of your dosimeters, in the 

above paragraph please specify that it is only for Co60 irradiation. 



 

REV#2 

1. Please draw the flow chart of the test scheme. 

2. How many test pieces are there for each working condition? 

3. Is the comparison of the experimental data the average comparison of the experimental data under 

each working condition? 

 

 

 

REV#3 

Reading the article “Polymer Film Blend of Polyvinyl Alcohol, Trichloroethylene and Cresol Red for 

Gamma Radiation Dosimetry”, I was very pleasantly surprised. I would only to write such reviews like 

this. The authors raised an important and interesting topic, concerning polymer composite of PVA, 

TEC and CR irradiated with gamma rays for potential application as dosimeter. The obtained results 

are correctly presented and described in details. The English language of the article is correct, without 

minor errors. I have just two remarks: 



1) On page 5, line 180-181 is the sentence: 

 “This difference may be due to various factors such as sample thickness… …sample systems”. 

In the article I have found just one information about thickness, namely average thickness: 75+/-1 μm. 

If such a physical parameter has a specific influence on the obtained results it should be included in 

the analysis of the results, but it is not. 

2) The conclusions are quite short against the background of the entire article (which is interesting and 

written very correctly). The conclusions could be little expanded. 
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Abstract: This study investigated the polymer film composite of polyvinyl alcohol (PVA), trichlor-

ethylene (TCE) and cresol red (CR) dye irradiated with gamma (γ) rays for potential application as 

radiation dosimetry. The film was prepared via the solvent-casting method with varying concentra-

tions of TCE. Film samples were exposed to radiation from a γ-rays radiation source of 60Cobalt 

isotope. Color changes before and after γ-rays irradiation were observed, and the optical properties 

of the polymer films were investigated by spectrophotometry. Results show that increasing the ra-

diation dose physically changed the color of the polymer film, from purple (pH > 8.8) without radi-

ation (0 kGy) to yellow (almost transparent) (2.8 < pH < 7.2) at the highest dose (12 kGy). The con-

centration of acid formed due to irradiation increased with the increase in irradiation doses and at 

higher TCE content. The critical doses of PVA-TCE composites decreased linearly with the increase 

of TCE composition, facilitating an easy calibration process. The dose response at 438 nm increased 

exponentially with increasing radiation dose, but showed an opposite trend at the 575 nm band. An 

increase in the TCA concentration indicated a decrease in the absorption edge and an increase in 

activation energy, but both decreased for all TCE concentrations at higher doses. The energy gap 

for the direct and the indirect transitions decreased with increasing TCE concentration and γ-rays 

radiation dose. The results of this study demonstrated the potential application of PVA-TCE-CR 

polymer film as γ-rays irradiation dosimetry in a useful dose range of 0–12 kGy. 

Keywords: optical properties; polymer film composite; γ-rays irradiation; dosimetry 

 

1. Introduction 

Dosimeters from various materials have been intensively studied as devices to mon-

itor radiation doses [1]. Dosimeters of colored thin-film polymer materials have been ex-

tensively developed for measuring the adsorbed radiation dose by materials, and have 

been applied in routine dosimeters [2]. The main technical advantage of a polymer film-

based dosimeter as a radiation detector is its slightness and portability [3]. In addition, 

the film has a long storage stability, is sturdy, and is cost-effective [4]. Some of the appli-

cations of film dosimeters include: routine high-dose radiation to food and beverages [5]; 

sterilization process [6]; radiotherapy in medical field [7]; and dye dosimeters [8–10]. 

Radiation dosimetry is used to measure the absorbed radiation dose, or determine 

the incident radiation on a material [11]. Therefore, it is necessary to ensure the accuracy 
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of the radiation dose [12,13]. Many materials have been developed and explored as radi-

ation dosimetry, evaluated under different dose ranges [14–16]. A film-based radiation 

dosimetry can be developed from a mixture of polymers, with a dye as indicator. The 

polymer materials that have been explored include polyvinyl alcohol (PVA) [5,13]; poly-

carbonate [17]; polyvinyl chloride [18]; and polyvinyl butyric [14]. Meanwhile, coloring 

materials as indicators include: methylene blue and methylene red [4]; thymolphthalein 

(TP) [5]; ethyl violet and blue bromophenol [19]; cresol red (CR) [20]; tetrazolium violet 

[21]; and methyl viologen [22]. 

PVA based polymer materials are most recommended because they have a high de-

gree of flexibility [23], are water-soluble [24], have good mechanical properties, and are 

non-toxic and elastic [25]. PVA has been combined with several mixed dyes (tetrabromo 

phenolphthalein ethyl ester, acid yellow, and chloral hydrate) and has shown promising 

prospect as a new dosimeter in the 0.1 to 5 kGy dose range [1]. PVA with TP dye is effec-

tive as a new detector system for application at doses of 1 to 6.5 kGy [5], and PVA with 

methyl thymol blue dye showed some efficacy under a dose range from 2.5 to 20 kGy [11]. 

Several blends of chlorine-containing polymer have been investigated for possible 

use for dosimetry of γ-rays radiation and electron beams [26,27]. They also contain dye as 

pH indicators, and the presence of chlorine improves the water solubility. For instance, a 

mixture of dehydrochlorines and an acid has a low pH. The low pH increases the sensi-

tivity of the dye component to change color. 

In this study, we explored the potential of PVA blended with trichlorethylene (TCE) 

and CR dye as a radiation dosimetry. The addition of a TCE that contains chlorine is ex-

pected to enhance the solubility and stabilize the pH [28], as well as increase the dye sen-

sitivity [29]. TCE is also found to be an electro-catalyst in polymers [30]. In order to be 

applied as a radiation dosimetry, the optical properties of the PVA-TCE-CR polymer film 

need to be further explored. In this study, we investigated the optical characteristics of the 

PVA-TCE polymer film with CR dye, and irradiated with γ-rays at doses of 0 to 12 kGy. 

Several samples with TCE variations (20%, 25%, 30%, and 35%) were fabricated and char-

acterized. 

2. Materials and Methods 

2.1. Polymer Film Preparation 

Polymer film composites were prepared from the following components: PVA, TCE, 

CR dye, and color thinners (ethanol and NaOH). The film from the mixture was prepared 

using the solvent-casting method [31]. A stock dye solution of the polymer film was pre-

pared by mixing CR 0.08 g (SDS for 105225, Merck, Germany) with 50 mL of ethanol (96% 

technical, Merck), and 10% NaOH (Merck). The mixture was then stirred for 10 min at 

room temperature until homogeneous. The prepared CR dye solution was placed in a 

closed container (bottle) at a room temperature of 25 °C until further use. 

The polymer film was prepared by dissolving 17.5 g PVA (Mw = 72,000 g/mol, Sigma-

Aldrich) with 350 mL distilled water in a beaker. This mixture was heated at 80 °C while 

stirring using a magnetic stirrer at 150 RPM in an open container (to allow evaporation) 

for 4 h until the remaining volume of solution was 50 mL. In this condition, TCE (Mw = 

131.39 g/mol, from Sigma-Aldrich) was added to the mixture while stirring for 1 h. The 

concentrations of TCE were varied at 20%, 25%, 30%, and 35%. Afterward, the tempera-

ture was lowered to 25 °C, then the mixture was added to the stock CR dye solution. The 

mixture was then continuously stirred for about 20 min until homogeneous. 

The homogeneous PVA-TCE-CR solution was poured onto a glass plate and spread 

evenly to form a thin film. The cast film was then left to stand for the drying process for 

120 h at a room temperature of 25 °C. Under this condition, a solid polymer film was 

formed by a mixture of PVA-TCE-CR. After solidification, the polymer film was cut into 

a size of 2 cm × 2 cm and stored in a special container ampoule to protect it from dirt and 
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sun exposure, at room temperature. The average thickness of the resulting polymer films 

was 75 ± 1 μm, measured using a digital micrometer (Mitutoyo, Japan). 

2.2. Polymer Film Irradiation 

The polymer film was irradiated with γ-rays (Gamma Irradiator ISG-500), sourced 

from 60Co pencil types (C 188-Nordion, City, State Canada) with an activity of 2 × 250 kCi 

and an average γ-energy of 1.25 MeV. The decay of a 60Co nucleus releases one electron 

with 317.9 keV energy and two γ quanta with energies of 1.173 MeV and 1.332 MeV. The 

films were irradiated with 1.25 MeV γ-rays from a J. L Sherpered type γ-ray 60Co source 

at a mean dose rate of 163.75 Gy.min−1. As such, the irradiation dosing rates were adjusted 

by manipulating the irradiation time. A total of 48 polymer film samples of four TCE con-

centrations (20%, 25%, 30%, and 35%) were irradiated under different doses of 1 to 12 kGy 

at room temperature. As benchmarks, four samples of the polymer film were not irradi-

ated (0 kGy) for each TCE concentration. The measurements were taken five times for each 

condition without any significant variations and presented as averages. The physical 

changes in the color of the film with or without irradiation were compared. From trial and 

error in the preliminary experiments, it was found that a small step of less than 1 kGy was 

insignificant in changing the color of the films. A step of 1 kGy was found significant and 

thus applied in the experiments. Moreover, these kinds of films are aimed to be used for 

sterilization applications that require up to 12 kGy. 

2.3. Optical Properties Analysis 

Measurement of the optical absorption of polymer films under all radiation doses 

and concentrations was done using a UV-Vis spectrophotometer (UV-1900i from Shi-

madzu, USA, WL range: 190–1100 nm, WA: +/− 0.1-nm). The scanning was done over a 

wavelength range of 300 to 700 nm. The optical absorption characteristics were plotted in 

the form of a graph to show wavelength vs. absorbance relationships. Measurements were 

made on each film sample that had been irradiated by γ-rays with four variations of TCA 

concentrations (20%, 25%, 30%, and 35%). The formation of acid in film composites, criti-

cal dose at color change, optical absorption dose response, absorption edge (AE), activation 

energy (ΔE), and energy gap (Eg) were then evaluated. The absorption edge and activation 

energy were determined according to the Urbach edges method [32], and the optical en-

ergy gap was determined according to the Mott and Davis model [33]. 

3. Results and Discussion 

3.1. Discoloration of the Polymer Film before and after Radiation 

The color of the PVA-TCE-CR polymer film samples before and after γ-rays irradia-

tion experienced significant changes as shown in Figure 1. Increasing the dose of γ-rays 

irradiation physically changed the color of the polymer film samples, from purple (pH> 

8.8) without radiation (0 kGy) to yellow (leading to transparency) (2.8 < pH < 7.2) at the 

highest dose (12 kGy). These findings show that exposure to γ-rays energy at different 

doses changed the color of the film, in which the dose played an important effect. The 

change of color was consistent for all variations of TCE concentrations. The decrease of 

the sample pH was caused by the presence of acids resulting from the interaction of γ-

rays with water molecules and TCE. 

The change in color can be ascribed to the decrease in the sample’s pH, caused by the 

presence of acid generated from the interaction of γ-rays with water molecules and TCE, 

a chlorine-containing substance. There was no color change for the dyed PVA films pre-

pared without TCE added (for one concentration), even though it was irradiated to 12 

kGy. This suggests that only TCE molecules of the PVA-TCE composites were affected by 

γ-rays irradiation within the applied dose range. Another study reported that the polymer 

film of PVA-chloral hydrate-TPBE-AY dyes irradiated by γ-rays produced colors from 
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green to yellow to red, due to a decrease in pH that occurred due to HCl produced from 

chloral radiolysis [1]. 

 

Figure 1. Appearance of the polymer film sample with 20% TCE after radiation with doses of (a) 0 

kGy; (b) 2 kGy; (c) 4 kGy; (d) 6 kGy; and (e) 12 kGy. 

The impact of irradiation on color changes found in this study is consistent with pre-

vious reports for different polymer film components. Previous studies showed that the 

blue color intensity of the polymer film mixture of methyl thymol blue and PVA decreased 

gradually with the increase in the γ-rays radiation dose. The color transition was at-

tributed to the formation of a large number of free radicals due to radiation exposure, 

which gradually increased the rate of blue color reduction in the polymer film samples 

[11]. The γ-rays interactions produced hydrated electrons and free radicals that damage 

the dye material molecules and remove chromophores [34,35]. Increasing the radiation 

dose also led to a gradual bleaching of the polymer samples, as reported elsewhere [36]. 

In another report, the chlorine bonding of the mixed film polymer was dehydrochlorin-

ated due to γ-rays irradiation, which increased the chlorine ion in the film [29]. 

3.2. Absorption Spectra 

Figure 2 shows the absorption spectrum of the polymer blend film with TCE compo-

sition at 20%, 25%, 30% and 35%. The absorption spectrum of the PVA-TCE-CR compo-

sites were measured before and after γ-irradiation with variable doses (0 to 12 kGy). Two 

absorption peaks at 438 and 575 nm bands were found to be consistent for all tested sam-

ples. A band at 575 nm served as the main absorbance peak of the purple color character-

istic of the PVA-TCE-CR polymer film composite. At 20% TCE, films with a radiation dose 

of 0 kGy (unirradiated) to the one irradiated with 9 kGy maintained the main absorption 

peak at 575 nm. However, the main absorbance peak of polymer films irradiated with 10, 

11 and 12 kGy shifted from 575 nm to 438 nm. The peak shifting for TCE concentration of 

25%, 30% and 35% occurred for irradiation doses of 9, 10, 11 and 12; 8, 9, 10, 11 and 12; 7, 

8, 9, 10, 11 and 12 kGy, respectively. 

The absorption spectra of the unirradiated films show a main absorption peak at the 

575 nm band (a characteristic of observed purple color). Upon irradiation, the absorbance 

at the 575 nm band decreased gradually, while at the absorption peak of the 438 nm band 

(a characteristic of observed yellow color) emerged with increasing intensity at higher 

doses. 

These results are consistent with the results of previous studies on composite poly-

mer film PVA-trichloroacetid acid (PVA-TCA) which produced the same absorption 

bands (575 nm and 438 nm) as expected for most organic compounds containing chlorine 

[29]. However, they have a different dose response. For a given absorption dose, the ab-

sorbance of PVA-TCE composites in the 575 nm band was higher than that of the PVA-

TCA composites, but for the 438 nm band, it was higher for the PVA-TCA composites 

than for the PVA-TCE composites. This difference within the literature data may be due 

to various factors, such as sample thickness, dose sensitivity, and the concentration of acid 

formed in the two sample systems. 

The colorimetric property associated with the change in the optical absorption peak 

due to gamma radiation on a film is an important aspect in radiation dosimetry. In this 

study, we identified highly visible results within a 1 to 12 kGy dose range that enable the 
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polymer film materials to be used in many dosimetry applications using 60Co. At low 

doses (<5 kGy), the film can be used as a dosimetry label or indicator for food irradiation 

processing, medical product sterilization, and polymer modification [1], while for high 

doses (>6 kGy), it can be applied to various control processes in industrial radiation facil-

ities [13]. 

  

(a) (b) 

  
(c) (d) 

Figure 2. Absorbance spectra of CR dyed PVA-TCE composites containing; (a) 20%; (b) 25%; (c) 

30%; and (d) 35% TCE irradiated with γ-rays at various doses. 

3.3. Formation of Acid in PVA-TCE Composites 

Figure 3 shows the concentration of acid formed in the PVA-TCE samples containing 

different TCE compositions as a function of the absorbed dose. It could be seen that the 

concentration of acid formed increased with the increase in the irradiation dose and the 

TCE content. Upon irradiation, the TCE in the polymer film was dechlorinated, in which 

chlorine ions detached from the carbon backbone of TCE. Thus, the excited TCE dissoci-

ated to radicals, which may be represented by Equation (1). 

C2HCl3* →  
.

22HClC  + 
.

Cl  (1) 

The radicals of hydrogen H* and hydroxyl OH* from hydrolysis of water, and Cl* 

from TCE recombined to form other chemical products including hydrochloric acid. 

Figure 3 shows the concentration of acid formed in the PVA-TCE-CR polymer film 

composites during irradiation with γ-rays. It can be seen that the acid concentration was 

dependent on the dose and the composition and type of blend added. The acid formed 

increased with increasing TCE concentration from 20% to 35% and with the radiation dose 

up to 12 kGy. 

Similar finding on acidification of irradiated polymer film were also reported in ear-

lier studies. For a single carbon bond (C–C) containing compound in PVA-chloral hydrate 

composite, the acid concentration at dose 12 kGy reached 1.0 mol L−1 for 34% CH [37], 

while at the same radiation dose reached of 0.18 mol L−1 for 35% TCA (in PVA-composite) 

[29]. However, the acid formed in a double carbon bond (C=C) containing compound such 

as PVA-TCE composites, the acid formed was much smaller at 0.015 mol L−1 for 20% TCE 
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and 0.022 mol L−1 for 35% TCE when irradiated at the dose 12 kGy. The increasing trend 

can be attributed to more energy of the photon required to break a covalent bond involv-

ing a C=C compound. It follows that the amount of acid formed and the subsequent chem-

ical and physical effects of irradiated PVA composites was influenced by the type of car-

bon bond of the compounds. 

 

Figure 3. Concentration of acid formed as function of dose in PVA-TCE-CR polymer films with 

different compositions of TCE derived from the absorbance at 438 nm. 

3.4. Critical Dose at Color Change 

The shift of the main absorption bands from 575 nm to 438 nm as the result of γ-rays 

irradiation on the film occurred at a certain dose point, called a critical dose, and has been 

shown in Figure 2. In Figure 4, the critical dose of each tested TCE concentration is pre-

sented by evaluating the intersection of absorption curves at 438 nm and 575 nm bands 

for each TCE composition. The dose at this intersection was taken as the critical dose (DC) 

at which the polymer film changed color from more purple/violet to more yellow (Figure 

1). Figure 4 also shows the useful critical dose as a function of TCE composition. The val-

ues obtained from 20%, 25%, 30%, and 35% of TCE were ranged at 8 to 9 kGy, 7 to 8 kGy, 

7 kGy, and 6 kGy, respectively. 

Figure 5 shows critical doses as a function of TCE composition for PVA-TCE-CR pol-

ymer film. The critical dose decreased linearly with the increase of TCE composition and 

has a relationship given by DC = −0.18C + 12.35 (r = 0.99), where C is the composition of 

TCE. It shows that he critical dose of polymer film composites decreased linearly with 

increasing TCE compositions. 

  

(a) (b) 
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(c) (d) 

Figure 4. Critical doses determined as the intersection of absorbance at 575 nm and 438 nm bands 

for PVA-TCE-CR polymer film containing (a) 20%, (b) 25%, (c) 30%, and (d) 35% TCE. 

 
Figure 5. Useful critical doses as a function of TCE concentration for PVA-TCE-CR polymer films. 

3.5. Optical Absorption Dose Response 

The radiation dose response for each absorption band was evaluated as a function of 

the TCE content in the PVA-TCE-CR polymer films. The dose-response curves at 438 nm 

increased exponentially with doses as shown in Figure 6a. The data fitted well with a 

mathematical model of 0/

0

DDeyy = . The dose sensitivity parameter D0 obtained had a 

function of D0 = 0.012C + 7.8311, where C is the composition of TCE, as shown in Figure 

6b. 

For the dose-response curves at 575-nm band, which decreased exponentially with 

dose, a mathematical model of 0/

0

DDeyy −
=  was used (Figure 6c). The results show that 

D0 had the relationship of D0 = 0.0098C + 3.6174, where C is the composition of TCE, as 

shown in Figure 6d. Since, D0 showed a linear relationship with the TCE composition, the 

dose response of the film is thus desirable for ease of calibration and interpretation as a 

radiation dosimetry. 
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(a) (b) 

 

 

(c) (d) 

Figure 6. Optical absorption dose response; (a) dose response curve at 438 nm band; (b) sensitive 

dose D0 vs. TCE composition as derived from 438 nm band; (c) dose response curve at 575 nm 

band; (d) sensitive dose D0 as a function of TCE composition as derived from 575 nm band. 

3.6. Absorption Edge 

The absorption of UV spectra increased with the increasing dose, as shown in Figure 

7. This band corresponded to the excitation of outer electrons attributed to the *−  

electronic transitions of electrons from donor atoms (HOMO) to acceptor atoms (LUMO) 

of the film. The absorption coefficient, α(v), of dyed PVA-TCE film was determined from 

the optical absorption spectrum. The plots of α(v) vs. hv at different doses are shown in 

Figure 7 for different TCE compositions. Near the absorption edge, α increased more rap-

idly with hv. The absorption edge was determined by extrapolating the linear portions of 

α(v) vs. hv curves to zero value of the absorption coefficient. 

  

(a) (b) 

  

(c) (d) 

Figure 7. Relationship between α(v) vs. hv under different doses for; (a) 20%; (b) 25%; (c) 30%; and 

(d) 35% of TCE content in PVA-TCE-CR polymer film. 
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The absorption edge decreased with increasing TCE composition and increasing dose 

as shown in Figure 8. The absorption edge of dyed PVA-TCE film decreased for 20% TCE 

from 4.88 to 4.72 eV when the dose increased from 0 to 12 kGy. For the same radiation 

condition, it decreases from 4.63 to 4.44 eV for 35% TCE. When compared with literature 

data, at about the same blend composition, the absorption edge of the PVA-CH film was 

higher than that the PVA-TCE film [37], followed by the PVA-TCA film [29]. Overall, the 

absorption edge of irradiated PVA-TCE composites was higher than that of the UPVC 

(4.35 to 2.04 eV) [38]. 

 

Figure 8. Absorption edge of PVA-TCE-CR polymer films as a function of dose for different TCE 

compositions. 

For pure PVA film, the absorption edge was found to be around 5.34 eV [39]. In the 

present study, this value was reduced by 0.9 eV, under 35% PVA-TCE and a dose of 12 

kGy to about 4.44 eV. A greater trend of decreasing absorption edge with increasing radi-

ation dose was also found in polymer films blended with salts, such as PVA-AgNO3 pol-

ymer film irradiated with γ-rays at high doses. At doses of 20 to 50 kGy, it produced an 

absorption edge of 1.43. to 0.96 eV [40]. 

3.7. Activation Energy 

The optical activation energy was evaluated using the Urbach edges method [32]. 

The activation energy of irradiated samples was determined from the slope of the straight 

line of ln(α) versus photon energy hv for different TCE compositions (Figure 9). The acti-

vation energy in a reaction is defined as the amount of energy required to start a reaction. 

This represents the minimum energy required to form a complex motion in the event of a 

collision between reagents [41]. 

  

(a) (b) 
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(c) (d) 

Figure 9. Variation of ln(α) vs. hν at various doses for; (a) 20%; (b) 25%; (c) 30%; and (d) 35% TCE 

composition of CR dyed PVA-TCE composites. 

From the results shown in Figure 10, it can be seen that activation energy decreased 

with the increase of the radiation dose as well as TCE concentration. It was found that the 

activation energy value at 0 Gy increased from 0.66 eV for the 20% TCE to 0.72 eV for the 

35% TCE. At 12 kGy, the value increases from 0.49 eV for the 20% TCE to 0.65 eV for the 

35% TCE. Therefore, activation energy increased with the increase of the TCE composition 

and decreased at higher doses. These findings are supported by the results of previous 

studies, that the activation energy decreased with an increasing dose of γ-rays irradiation 

[29] as a result of chain-scission polymeric molecules in polymer samples [42]. Evaluation 

of previous studies revealed that activation energy values of PVA-TCE composites were 

higher than that of PVA-TCA composites for all tested compositions and doses [29]. This 

finding suggests that radiation dose affected significantly the change of the width of the 

tail of the localized states of the energy band. 

 

Figure 10. Effect of γ-rays irradiation and TCE composition on the optical activation energy (ΔE) 

of CR dyed PVA-TCE composites. 

3.8. Band Gap Energy 

Figure 11 shows extrapolation (αhν)m versus hν that resulted in a variation energy 

gap for each radiation dose and concentration. The energy gap was determined according 

to the Mott and Davis model [33]. Band gap energy or energy gap is the energy range in 

the absence of electrons from a material; it lies between the valence and conduction bands 

[43]. Enough energy is required to make the transition of these two bands [44]. Optical 

absorption spectrum analysis can be used to determine the optical energy gap between 

the valence band and the conduction band due to direct and indirect transitions [45,46]. 

The direct optical band gaps in UV region were evaluated from (αhv)2 versus hv at differ-

ent doses, as illustrated in Figure 11. 

Figure 12 summarizes the relationship between the optical band gaps and dose at 

different TCE compositions. The results show that the direct energy gap decreased with 
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increasing doses for all TCE compositions. It was found that the energy gap at 0 Gy de-

creased from 5.21 eV for the 20% TCE to 5.07 eV for the 35% TCE. At 12 kGy, the value 

decreased from 5.04 eV for the 20% TCE to 4.90 eV for the 35% TCE. The energy gap value 

of the PVA-TCE film was slightly smaller than that of the PVA-TCA films under all doses 

[29]. 

  

(a) (b) 

  

(c) (d) 

Figure 11. Variation of direct allowed transition (αhv)2 vs. hv at various doses for PVA-TCE-CR 

polymer film at; (a) 20%; (b) 25%; (c) 30%; and (d) 35% TCE composition. 

 

Figure 12. Variation of the direct energy band gaps with dose for PVA-TCE-CT polymer films at 

different TCE compositions. 

The indirect optical band gap energy of the UV region was evaluated from the linear 

plots of (αhv)1/2 vs. hv under different doses, as illustrated in Figure 13. The extrapolation, 

for which (αhv)1/2 = 0 yielded the indirect optical band gap, was a function of the dose, as 

illustrated in Figure 14. The indirect band gap decreased with the increase in dose for all 

TCE compositions. It had similar features to that of the direct band gap, but the value of 

Commented [SB17]: Please ensure intended 

meaning is retained. 



Polymers 2021, 13, x FOR PEER REVIEW 12 of 15 
 

 

the indirect band gap energy was always smaller. It was found that at 0 Gy, the indirect 

energy gap decreased from 4.96 eV for the 20% TCE to 4.62 eV for the 35% TCE. At 12 

kGy, the value decreased from 4.74 eV for the 20% TCE to 4.23 eV for the 35% TCE. It was 

found also that the indirect band gaps of the PVA-TCE composites were larger than that 

of the PVA-TCA composites [29], for the same compositions and doses. The decrease in 

the band gap resulted from the increase in polarons and free ions in the polymer sample, 

due to exposure to the γ-rays irradiation, as explained elsewhere [44,47]. 

  

(a) (b) 

  

(c) (d) 

Figure 13. Variation of indirect allowed transition (αhv)1/2 vs. hv at various doses PVA-TCE-CT 

polymer films at; (a) 20%; (b) 25%; (c) 30%; and (d) 35% TCE composition. 

 

Figure 14. Variation of the indirect energy band gaps with dose for CR dyed PVA-TCE films at 

different TCE compositions. 

Overall, these results suggest that the amount of energy gap in the irradiated poly-

mer material depends on the type and composition of the dopants under the influence of 

γ-ray irradiation. The response of the optical properties of the material to the radiation 

dose is very important to be investigated. The results of previous studies showed a linear 

response of decreasing energy gaps to γ-rays irradiation on TeO2 thin films observed in 
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the dose range of 0 to 37 Gy, which resulted in an energy gap in the range of 3.75 to 345 

eV [48]. The linear response decreased the energy gap to 4.16 and 4.34 eV for KCl-Mn and 

KCl-Ce phosphorus polymer materials irradiated with γ-rays at doses of 0.08 to 0.75 kGy 

[49]. 

The behavior of the optical properties of the studied material specimens under the 

influence of radiation dose is important to identify its potential application in radiation 

dosimetry systems. They usually show varying responses to the dose exposed to the ma-

terial, such as linear, supralinear, saturated response, and defective with increasing radi-

ation dose [50]. In this present work, the energy gap for both types of transitions (direct 

and indirect) showed a linear decreasing response to radiation dose. Linearity indicated 

that the material has stable optical properties which can be used as a promising dosimetry 

[48,49]. 

4. Conclusions 

The PVA-TCE-CR polymer film composite has been introduced for γ-rays irradiation 

dosimetry applications. The study of its optical properties was explored before and after 

γ-rays irradiation. Results showed that increasing the radiation dose physically changed 

the color of the polymer film, from purple (pH > 8.8) without radiation (0 kGy) to yellow 

(almost transparent) (2.8 < pH < 7.2) at the highest dose (12 kGy), demonstrating its effec-

tive use as dosimetry. The concentration of acid formed increased at a higher dosing rate 

and composition of TCE, which affected the color transition of the irradiated films. The 

critical doses of film composites decreased linearly with the increase of TCE compositions. 

The dose response at 438 nm increased exponentially with increasing radiation doses. 

Conversely, the dose response at the 575 nm band decreased with increasing radiation 

doses. An increase in the TCA concentration indicated a decrease in the absorption edge 

and an increase in activation energy, but both decreased for all TCE concentrations at 

higher doses. The energy gap for the direct and the indirect transitions decreased with 

increasing TCE concentration and γ-rays radiation dose. The results of this study indi-

cated the potential application of PVA-TCE-CR polymer film as γ-rays irradiation dosim-

etry in a useful dose range of 0–12 kGy. We have identified highly visible results within a 

1 to 12 kGy dose range, allowing the PVA-TCE-CR based polymer film composite to be 

applied in many dosimetry applications using 60CO. At doses of <5 kGy, it is applicable as 

a dosimetry label or indicator for food irradiation processing and polymer modification, 

while for doses of >6 kGy, it can be applied to medical product sterilization and various 

control processes in radiation facilities. 
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Abstract: This study investigated the polymer film composite of polyvinyl alcohol (PVA), trichlorethy-
lene (TCE) and cresol red (CR) dye irradiated with gamma (γ) rays for potential application as
radiation dosimetry. The film was prepared via the solvent-casting method with varying concen-
trations of TCE. Film samples were exposed to radiation from a γ-rays radiation source of 60Cobalt
isotope. Color changes before and after γ-rays irradiation were observed, and the optical properties
of the polymer films were investigated by spectrophotometry. Results show that increasing the
radiation dose physically changed the color of the polymer film, from purple (pH > 8.8) without
radiation (0 kGy) to yellow (almost transparent) (2.8 < pH < 7.2) at the highest dose (12 kGy). The
concentration of acid formed due to irradiation increased with the increase in irradiation doses and
at higher TCE content. The critical doses of PVA-TCE composites decreased linearly with the increase
of TCE composition, facilitating an easy calibration process. The dose response at 438 nm increased
exponentially with increasing radiation dose, but showed an opposite trend at the 575 nm band. An
increase in the TCA concentration indicated a decrease in the absorption edge and an increase in
activation energy, but both decreased for all TCE concentrations at higher doses. The energy gap
for the direct and the indirect transitions decreased with increasing TCE concentration and γ-rays
radiation dose. The results of this study demonstrated the potential application of PVA-TCE-CR
polymer film as γ-rays irradiation dosimetry in a useful dose range of 0–12 kGy.

Keywords: optical properties; polymer film composite; γ-rays irradiation; dosimetry

1. Introduction

Dosimeters from various materials have been intensively studied as devices to monitor
radiation doses [1]. Dosimeters of colored thin-film polymer materials have been exten-
sively developed for measuring the adsorbed radiation dose by materials, and have been
applied in routine dosimeters [2]. The main technical advantage of a polymer film-based
dosimeter as a radiation detector is its slightness and portability [3]. In addition, the film
has a long storage stability, is sturdy, and is cost-effective [4]. Some of the applications of
film dosimeters include: routine high-dose radiation to food and beverages [5]; sterilization
process [6]; radiotherapy in medical field [7]; and dye dosimeters [8–10].

Radiation dosimetry is used to measure the absorbed radiation dose, or determine
the incident radiation on a material [11]. Therefore, it is necessary to ensure the accuracy
of the radiation dose [12,13]. Many materials have been developed and explored as radi-
ation dosimetry, evaluated under different dose ranges [14–16]. A film-based radiation
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dosimetry can be developed from a mixture of polymers, with a dye as indicator. The
polymer materials that have been explored include polyvinyl alcohol (PVA) [5,13]; poly-
carbonate [17]; polyvinyl chloride [18]; and polyvinyl butyric [14]. Meanwhile, coloring
materials as indicators include: methylene blue and methylene red [4]; thymolphthalein
(TP) [5]; ethyl violet and blue bromophenol [19]; cresol red (CR) [20]; tetrazolium violet [21];
and methyl viologen [22].

PVA based polymer materials are most recommended because they have a high
degree of flexibility [23], are water-soluble [24], have good mechanical properties, and are
non-toxic and elastic [25]. PVA has been combined with several mixed dyes (tetrabromo
phenolphthalein ethyl ester, acid yellow, and chloral hydrate) and has shown promising
prospect as a new dosimeter in the 0.1 to 5 kGy dose range [1]. PVA with TP dye is effective
as a new detector system for application at doses of 1 to 6.5 kGy [5], and PVA with methyl
thymol blue dye showed some efficacy under a dose range from 2.5 to 20 kGy [11].

Several blends of chlorine-containing polymer have been investigated for possible
use for dosimetry of γ-rays radiation and electron beams [26,27]. They also contain dye as
pH indicators, and the presence of chlorine improves the water solubility. For instance, a
mixture of dehydrochlorines and an acid has a low pH. The low pH increases the sensitivity
of the dye component to change color.

In this study, we explored the potential of PVA blended with trichlorethylene (TCE)
and CR dye as a radiation dosimetry. The addition of a TCE that contains chlorine is
expected to enhance the solubility and stabilize the pH [28], as well as increase the dye
sensitivity [29]. TCE is also found to be an electro-catalyst in polymers [30]. In order to
be applied as a radiation dosimetry, the optical properties of the PVA-TCE-CR polymer
film need to be further explored. In this study, we investigated the optical characteristics
of the PVA-TCE polymer film with CR dye, and irradiated with γ-rays at doses of 0 to
12 kGy. Several samples with TCE variations (20%, 25%, 30%, and 35%) were fabricated
and characterized.

2. Materials and Methods
2.1. Polymer Film Preparation

Polymer film composites were prepared from the following components: PVA, TCE,
CR dye, and color thinners (ethanol and NaOH). The film from the mixture was prepared
using the solvent-casting method [31]. A stock dye solution of the polymer film was
prepared by mixing CR 0.08 g (SDS for 105225, Merck, Darmstadt, Germany) with 50 mL of
ethanol (96% technical, Merck, Darmstadt, Germany), and 10% NaOH (Merck, Darmstadt,
Germany). The mixture was then stirred for 10 min at room temperature until homoge-
neous. The prepared CR dye solution was placed in a closed container (bottle) at a room
temperature of 25 ◦C until further use.

The polymer film was prepared by dissolving 17.5 g PVA (Mw = 72,000 g/mol, Sigma-
Aldrich, St Louis, MO, USA) with 350 mL distilled water in a beaker. This mixture was
heated at 80 ◦C while stirring using a magnetic stirrer at 150 RPM in an open container
(to allow evaporation) for 4 h until the remaining volume of solution was 50 mL. In this
condition, TCE (Mw = 131.39 g/mol, Sigma-Aldrich, St Louis, MO, USA) was added to the
mixture while stirring for 1 h. The concentrations of TCE were varied at 20%, 25%, 30%,
and 35%. Afterward, the temperature was lowered to 25 ◦C, then the mixture was added
to the stock CR dye solution. The mixture was then continuously stirred for about 20 min
until homogeneous.

The homogeneous PVA-TCE-CR solution was poured onto a glass plate and spread
evenly to form a thin film. The cast film was then left to stand for the drying process
for 120 h at a room temperature of 25 ◦C. Under this condition, a solid polymer film was
formed by a mixture of PVA-TCE-CR. After solidification, the polymer film was cut into a
size of 2 cm× 2 cm and stored in a special container ampoule to protect it from dirt and sun
exposure, at room temperature. The average thickness of the resulting polymer films was
75± 1 µm, measured using a digital micrometer (Mitutoyo Corporation, Kanagawa, Japan).
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2.2. Polymer Film Irradiation

The polymer film was irradiated with γ-rays (Gamma Irradiator ISG-500), sourced
from 60Co pencil types (C-188 Cobalt-60 Sources, Nordion, Ottawa, ON, Canada) with an
activity of 2 × 250 kCi and an average γ-energy of 1.25 MeV. The decay of a 60Co nucleus
releases one electron with 317.9 keV energy and two γ quanta with energies of 1.173 MeV
and 1.332 MeV. The films were irradiated with 1.25 MeV γ-rays from a J. L Sherpered
type γ-ray 60Co source at a mean dose rate of 163.75 Gy.min−1. As such, the irradiation
dosing rates were adjusted by manipulating the irradiation time. A total of 48 polymer
film samples of four TCE concentrations (20%, 25%, 30%, and 35%) were irradiated under
different doses of 1 to 12 kGy at room temperature. As benchmarks, four samples of the
polymer film were not irradiated (0 kGy) for each TCE concentration. The measurements
were taken five times for each condition without any significant variations and presented
as averages. The physical changes in the color of the film with or without irradiation were
compared. From trial and error in the preliminary experiments, it was found that a small
step of less than 1 kGy was insignificant in changing the color of the films. A step of 1 kGy
was found significant and thus applied in the experiments. Moreover, these kinds of films
are aimed to be used for sterilization applications that require up to 12 kGy.

2.3. Optical Properties Analysis

Measurement of the optical absorption of polymer films under all radiation doses
and concentrations was done using a UV-Vis spectrophotometer (UV-1900i, WL range:
190–1100 nm, WA: +/− 0.1-nm, Shimadzu, Canby, OR, USA). The scanning was done over
a wavelength range of 300 to 700 nm. The optical absorption characteristics were plotted in
the form of a graph to show wavelength vs. absorbance relationships. Measurements were
made on each film sample that had been irradiated by γ-rays with four variations of TCA
concentrations (20%, 25%, 30%, and 35%). The formation of acid in film composites, critical
dose at color change, optical absorption dose response, absorption edge (AE), activation
energy (∆E), and energy gap (Eg) were then evaluated. The absorption edge and activation
energy were determined according to the Urbach edges method [32], and the optical energy
gap was determined according to the Mott and Davis model [33].

3. Results and Discussion
3.1. Discoloration of the Polymer Film before and after Radiation

The color of the PVA-TCE-CR polymer film samples before and after γ-rays irradiation
experienced significant changes as shown in Figure 1. Increasing the dose of γ-rays irra-
diation physically changed the color of the polymer film samples, from purple (pH > 8.8)
without radiation (0 kGy) to yellow (leading to transparency) (2.8 < pH < 7.2) at the highest
dose (12 kGy). These findings show that exposure to γ-rays energy at different doses
changed the color of the film, in which the dose played an important effect. The change of
color was consistent for all variations of TCE concentrations. The decrease of the sample
pH was caused by the presence of acids resulting from the interaction of γ-rays with water
molecules and TCE.

The change in color can be ascribed to the decrease in the sample’s pH, caused by
the presence of acid generated from the interaction of γ-rays with water molecules and
TCE, a chlorine-containing substance. There was no color change for the dyed PVA films
prepared without TCE added (for one concentration), even though it was irradiated to
12 kGy. This suggests that only TCE molecules of the PVA-TCE composites were affected by
γ-rays irradiation within the applied dose range. Another study reported that the polymer
film of PVA-chloral hydrate-TPBE-AY dyes irradiated by γ-rays produced colors from
green to yellow to red, due to a decrease in pH that occurred due to HCl produced from
chloral radiolysis [1].
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Figure 1. Appearance of the polymer film sample with 20% TCE after radiation with doses of
(a) 0 kGy; (b) 2 kGy; (c) 4 kGy; (d) 6 kGy; and (e) 12 kGy.

The impact of irradiation on color changes found in this study is consistent with
previous reports for different polymer film components. Previous studies showed that
the blue color intensity of the polymer film mixture of methyl thymol blue and PVA
decreased gradually with the increase in the γ-rays radiation dose. The color transition
was attributed to the formation of a large number of free radicals due to radiation exposure,
which gradually increased the rate of blue color reduction in the polymer film samples [11].
The γ-rays interactions produced hydrated electrons and free radicals that damage the dye
material molecules and remove chromophores [34,35]. Increasing the radiation dose also
led to a gradual bleaching of the polymer samples, as reported elsewhere [36]. In another
report, the chlorine bonding of the mixed film polymer was dehydrochlorinated due to
γ-rays irradiation, which increased the chlorine ion in the film [29].

3.2. Absorption Spectra

Figure 2 shows the absorption spectrum of the polymer blend film with TCE composi-
tion at 20%, 25%, 30% and 35%. The absorption spectrum of the PVA-TCE-CR composites
were measured before and after γ-irradiation with variable doses (0 to 12 kGy). Two ab-
sorption peaks at 438 and 575 nm bands were found to be consistent for all tested samples.
A band at 575 nm served as the main absorbance peak of the purple color characteristic
of the PVA-TCE-CR polymer film composite. At 20% TCE, films with a radiation dose of
0 kGy (unirradiated) to the one irradiated with 9 kGy maintained the main absorption peak
at 575 nm. However, the main absorbance peak of polymer films irradiated with 10, 11 and
12 kGy shifted from 575 nm to 438 nm. The peak shifting for TCE concentration of 25%,
30% and 35% occurred for irradiation doses of 9, 10, 11 and 12; 8, 9, 10, 11 and 12; 7, 8, 9, 10,
11 and 12 kGy, respectively.

The absorption spectra of the unirradiated films show a main absorption peak at the
575 nm band (a characteristic of observed purple color). Upon irradiation, the absorbance
at the 575 nm band decreased gradually, while at the absorption peak of the 438 nm band (a
characteristic of observed yellow color) emerged with increasing intensity at higher doses.

These results are consistent with the results of previous studies on composite polymer
film PVA-trichloroacetid acid (PVA-TCA) which produced the same absorption bands
(575 nm and 438 nm) as expected for most organic compounds containing chlorine [29].
However, they have a different dose response. For a given absorption dose, the absorbance
of PVA-TCE composites in the 575 nm band was higher than that of the PVA-TCA com-
posites, but for the 438 nm band, it was higher for the PVA-TCA composites than for the
PVA-TCE composites. This difference within the literature data may be due to various
factors, such as sample thickness, dose sensitivity, and the concentration of acid formed in
the two sample systems.

The colorimetric property associated with the change in the optical absorption peak
due to gamma radiation on a film is an important aspect in radiation dosimetry. In this
study, we identified highly visible results within a 1 to 12 kGy dose range that enable the
polymer film materials to be used in many dosimetry applications using 60Co. At low doses
(<5 kGy), the film can be used as a dosimetry label or indicator for food irradiation pro-
cessing, medical product sterilization, and polymer modification [1], while for high doses
(>6 kGy), it can be applied to various control processes in industrial radiation facilities [13].
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Figure 2. Absorbance spectra of CR dyed PVA-TCE composites containing; (a) 20%; (b) 25%; (c) 30%;
and (d) 35% TCE irradiated with γ-rays at various doses.

3.3. Formation of Acid in PVA-TCE Composites

Figure 3 shows the concentration of acid formed in the PVA-TCE samples containing
different TCE compositions as a function of the absorbed dose. It could be seen that the
concentration of acid formed increased with the increase in the irradiation dose and the
TCE content. Upon irradiation, the TCE in the polymer film was dechlorinated, in which
chlorine ions detached from the carbon backbone of TCE. Thus, the excited TCE dissociated
to radicals, which may be represented by Equation (1).

C2HCl3∗ →
.

C2HCl2 +
.

Cl (1)

The radicals of hydrogen H* and hydroxyl OH* from hydrolysis of water, and Cl*
from TCE recombined to form other chemical products including hydrochloric acid.

Figure 3 shows the concentration of acid formed in the PVA-TCE-CR polymer film
composites during irradiation with γ-rays. It can be seen that the acid concentration was
dependent on the dose and the composition and type of blend added. The acid formed
increased with increasing TCE concentration from 20% to 35% and with the radiation dose
up to 12 kGy.

Similar finding on acidification of irradiated polymer film were also reported in earlier
studies. For a single carbon bond (C–C) containing compound in PVA-chloral hydrate com-
posite, the acid concentration at dose 12 kGy reached 1.0 mol L−1 for 34% CH [37], while
at the same radiation dose reached of 0.18 mol L−1 for 35% TCA (in PVA-composite) [29].
However, the acid formed in a double carbon bond (C=C) containing compound such as
PVA-TCE composites, the acid formed was much smaller at 0.015 mol L−1 for 20% TCE
and 0.022 mol L−1 for 35% TCE when irradiated at the dose 12 kGy. The increasing trend
can be attributed to more energy of the photon required to break a covalent bond involving
a C=C compound. It follows that the amount of acid formed and the subsequent chemical
and physical effects of irradiated PVA composites was influenced by the type of carbon
bond of the compounds.
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Figure 3. Concentration of acid formed as function of dose in PVA-TCE-CR polymer films with
different compositions of TCE derived from the absorbance at 438 nm.

3.4. Critical Dose at Color Change

The shift of the main absorption bands from 575 nm to 438 nm as the result of γ-rays
irradiation on the film occurred at a certain dose point, called a critical dose, and has
been shown in Figure 2. In Figure 4, the critical dose of each tested TCE concentration
is presented by evaluating the intersection of absorption curves at 438 nm and 575 nm
bands for each TCE composition. The dose at this intersection was taken as the critical dose
(DC) at which the polymer film changed color from more purple/violet to more yellow
(Figure 1). Figure 4 also shows the useful critical dose as a function of TCE composition.
The values obtained from 20%, 25%, 30%, and 35% of TCE were ranged at 8 to 9 kGy, 7 to
8 kGy, 7 kGy, and 6 kGy, respectively.
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Figure 5 shows critical doses as a function of TCE composition for PVA-TCE-CR
polymer film. The critical dose decreased linearly with the increase of TCE composition
and has a relationship given by DC = −0.18C + 12.35 (r = 0.99), where C is the composition
of TCE. It shows that he critical dose of polymer film composites decreased linearly with
increasing TCE compositions.
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3.5. Optical Absorption Dose Response

The radiation dose response for each absorption band was evaluated as a function of
the TCE content in the PVA-TCE-CR polymer films. The dose-response curves at 438 nm
increased exponentially with doses as shown in Figure 6a. The data fitted well with a
mathematical model of y = y0eD/D0 . The dose sensitivity parameter D0 obtained had a
function of D0 = 0.012C + 7.8311, where C is the composition of TCE, as shown in Figure 6b.
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For the dose-response curves at 575-nm band, which decreased exponentially with
dose, a mathematical model of y = y0e−D/D0 was used (Figure 6c). The results show that
D0 had the relationship of D0 = 0.0098C + 3.6174, where C is the composition of TCE, as
shown in Figure 6d. Since, D0 showed a linear relationship with the TCE composition, the
dose response of the film is thus desirable for ease of calibration and interpretation as a
radiation dosimetry.

3.6. Absorption Edge

The absorption of UV spectra increased with the increasing dose, as shown in Figure 7.
This band corresponded to the excitation of outer electrons attributed to the π − π∗
electronic transitions of electrons from donor atoms (HOMO) to acceptor atoms (LUMO)
of the film. The absorption coefficient, α(v), of dyed PVA-TCE film was determined from
the optical absorption spectrum. The plots of α(v) vs. hv at different doses are shown
in Figure 7 for different TCE compositions. Near the absorption edge, α increased more
rapidly with hv. The absorption edge was determined by extrapolating the linear portions
of α(v) vs. hv curves to zero value of the absorption coefficient.
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The absorption edge decreased with increasing TCE composition and increasing dose
as shown in Figure 8. The absorption edge of dyed PVA-TCE film decreased for 20% TCE
from 4.88 to 4.72 eV when the dose increased from 0 to 12 kGy. For the same radiation
condition, it decreases from 4.63 to 4.44 eV for 35% TCE. When compared with literature
data, at about the same blend composition, the absorption edge of the PVA-CH film was
higher than that the PVA-TCE film [37], followed by the PVA-TCA film [29]. Overall, the
absorption edge of irradiated PVA-TCE composites was higher than that of the UPVC (4.35
to 2.04 eV) [38].
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Figure 8. Absorption edge of PVA-TCE-CR polymer films as a function of dose for different TCE
compositions.

For pure PVA film, the absorption edge was found to be around 5.34 eV [39]. In
the present study, this value was reduced by 0.9 eV, under 35% PVA-TCE and a dose of
12 kGy to about 4.44 eV. A greater trend of decreasing absorption edge with increasing
radiation dose was also found in polymer films blended with salts, such as PVA-AgNO3
polymer film irradiated with γ-rays at high doses. At doses of 20 to 50 kGy, it produced an
absorption edge of 1.43. to 0.96 eV [40].

3.7. Activation Energy

The optical activation energy was evaluated using the Urbach edges method [32]. The
activation energy of irradiated samples was determined from the slope of the straight line
of ln(α) versus photon energy hv for different TCE compositions (Figure 9). The activation
energy in a reaction is defined as the amount of energy required to start a reaction. This
represents the minimum energy required to form a complex motion in the event of a
collision between reagents [41].
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From the results shown in Figure 10, it can be seen that activation energy decreased
with the increase of the radiation dose as well as TCE concentration. It was found that the
activation energy value at 0 Gy increased from 0.66 eV for the 20% TCE to 0.72 eV for the
35% TCE. At 12 kGy, the value increases from 0.49 eV for the 20% TCE to 0.65 eV for the 35%
TCE. Therefore, activation energy increased with the increase of the TCE composition and
decreased at higher doses. These findings are supported by the results of previous studies,
that the activation energy decreased with an increasing dose of γ-rays irradiation [29]
as a result of chain-scission polymeric molecules in polymer samples [42]. Evaluation
of previous studies revealed that activation energy values of PVA-TCE composites were
higher than that of PVA-TCA composites for all tested compositions and doses [29]. This
finding suggests that radiation dose affected significantly the change of the width of the
tail of the localized states of the energy band.
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3.8. Band Gap Energy

Figure 11 shows extrapolation (αhν)m versus hν that resulted in a variation energy
gap for each radiation dose and concentration. The energy gap was determined according
to the Mott and Davis model [33]. Band gap energy or energy gap is the energy range
in the absence of electrons from a material; it lies between the valence and conduction
bands [43]. Enough energy is required to make the transition of these two bands [44]. Opti-
cal absorption spectrum analysis can be used to determine the optical energy gap between
the valence band and the conduction band due to direct and indirect transitions [45,46].
The direct optical band gaps in UV region were evaluated from (αhv)2 versus hv at different
doses, as illustrated in Figure 11.

Figure 12 summarizes the relationship between the optical band gaps and dose at
different TCE compositions. The results show that the direct energy gap decreased with
increasing doses for all TCE compositions. It was found that the energy gap at 0 Gy
decreased from 5.21 eV for the 20% TCE to 5.07 eV for the 35% TCE. At 12 kGy, the value
decreased from 5.04 eV for the 20% TCE to 4.90 eV for the 35% TCE. The energy gap
value of the PVA-TCE film was slightly smaller than that of the PVA-TCA films under
all doses [29].

The indirect optical band gap energy of the UV region was evaluated from the linear
plots of (αhv)1/2 vs. hv under different doses, as illustrated in Figure 13. The extrapolation,
for which (αhv)1/2 = 0 yielded the indirect optical band gap, was a function of the dose, as
illustrated in Figure 14. The indirect band gap decreased with the increase in dose for all
TCE compositions. It had similar features to that of the direct band gap, but the value of
the indirect band gap energy was always smaller. It was found that at 0 Gy, the indirect
energy gap decreased from 4.96 eV for the 20% TCE to 4.62 eV for the 35% TCE. At 12 kGy,
the value decreased from 4.74 eV for the 20% TCE to 4.23 eV for the 35% TCE. It was found
also that the indirect band gaps of the PVA-TCE composites were larger than that of the
PVA-TCA composites [29], for the same compositions and doses. The decrease in the band
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gap resulted from the increase in polarons and free ions in the polymer sample, due to
exposure to the γ-rays irradiation, as explained elsewhere [44,47].

Overall, these results suggest that the amount of energy gap in the irradiated polymer
material depends on the type and composition of the dopants under the influence of γ-ray
irradiation. The response of the optical properties of the material to the radiation dose is
very important to be investigated. The results of previous studies showed a linear response
of decreasing energy gaps to γ-rays irradiation on TeO2 thin films observed in the dose
range of 0 to 37 Gy, which resulted in an energy gap in the range of 3.75 to 345 eV [48].
The linear response decreased the energy gap to 4.16 and 4.34 eV for KCl-Mn and KCl-Ce
phosphorus polymer materials irradiated with γ-rays at doses of 0.08 to 0.75 kGy [49].
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The behavior of the optical properties of the studied material specimens under the
influence of radiation dose is important to identify its potential application in radiation
dosimetry systems. They usually show varying responses to the dose exposed to the
material, such as linear, supralinear, saturated response, and defective with increasing
radiation dose [50]. In this present work, the energy gap for both types of transitions
(direct and indirect) showed a linear decreasing response to radiation dose. Linearity
indicated that the material has stable optical properties which can be used as a promising
dosimetry [48,49].

4. Conclusions

The PVA-TCE-CR polymer film composite has been introduced for γ-rays irradiation
dosimetry applications. The study of its optical properties was explored before and after
γ-rays irradiation. Results showed that increasing the radiation dose physically changed
the color of the polymer film, from purple (pH > 8.8) without radiation (0 kGy) to yellow
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(almost transparent) (2.8 < pH < 7.2) at the highest dose (12 kGy), demonstrating its
effective use as dosimetry. The concentration of acid formed increased at a higher dosing
rate and composition of TCE, which affected the color transition of the irradiated films. The
critical doses of film composites decreased linearly with the increase of TCE compositions.
The dose response at 438 nm increased exponentially with increasing radiation doses.
Conversely, the dose response at the 575 nm band decreased with increasing radiation
doses. An increase in the TCA concentration indicated a decrease in the absorption edge
and an increase in activation energy, but both decreased for all TCE concentrations at
higher doses. The energy gap for the direct and the indirect transitions decreased with
increasing TCE concentration and γ-rays radiation dose. The results of this study indicated
the potential application of PVA-TCE-CR polymer film as γ-rays irradiation dosimetry
in a useful dose range of 0–12 kGy. We have identified highly visible results within a 1
to 12 kGy dose range, allowing the PVA-TCE-CR based polymer film composite to be
applied in many dosimetry applications using 60CO. At doses of <5 kGy, it is applicable as
a dosimetry label or indicator for food irradiation processing and polymer modification,
while for doses of >6 kGy, it can be applied to medical product sterilization and various
control processes in radiation facilities.
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