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* Correspondence: aris_doyan@unram.ac.id (A.D.) and muhammadoilbilad@ikipmataram.ac.id (M.R.B.) 19 

Abstract: The increasing rate of oil and gas production has contributed in a release of oil-in-water 20 

emulsion or mixtures to the environment which has become a pressing issue. At the same time, 21 

pollution of the toxic cigarette filter has also become the growing concern. This study explores 22 

utilization of cigarette filter waste as source of cellulose acetate-based (CA) polymer to develop 23 

phase inverted membrane for treatment of oil/water emulsion and compared with commercial 24 

polyvinylidene difluoride (PVDF) and polysulfone (PSF). Results show that CA-based membrane 25 

from waste cigarette butt offers an eco-friendly material without compromising the separation 26 

efficiency, with pore size range suitable for oil/water emulsion filtration with rejection of >94.0%. 27 

The CA membrane poses good structural property like that of established PVDF and PSF 28 

membranes with equally asymmetric morphology. It also poses hydrophilicity properties with 29 

contact angle of 74.5°, lower than both PVDF and PSF membranes. The pore size of CA 30 

demonstrates the CA is within the microfiltration range with mean flow pore size of 0.17 µm. The 31 

developed CA membrane shows a promising oil/water emulsion permeability of 180 L m-2 h-1 bar-1 32 

after five filtration cycles. However, it still suffers a high degree of irreversible fouling (>90.0%), 33 

suggesting potential for future improvements. Overall, this study demonstrates a sustainable 34 

approach in addressing issue of oil/water emulsion pollution treated CA membrane from cigarette 35 

butt waste. 36 

Keywords: cellulose acetate; cigarette waste; membrane fabrication; crossflow filtration; oily 37 

wastewater; phase inversion 38 

 39 

1. Introduction 40 

Trillions of cigarette filters are deposited annually in the environment, and they have 41 

been reported to be the most littered item worldwide. In 2002, over 5.6 trillion cigarette 42 

filters were used in the world, and this figure is expected to increase by 1.6 times in 2025 43 

[1]. The scientific community has been actively seeking for economical and sustainable 44 

solutions to tackle the cigarette filter waste pollution issue. To date, the alternatives to 45 
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handle the pollution include degradation, incineration, recycling, and landfilling. Several 46 

studies on converting the waste cigarette butts into usable products were made in various 47 

fields, mainly in environmental engineering, buildings and infrastructures, energy 48 

storage devices, insecticide, and metallurgical industry [2]. Analysis on the potential 49 

recycling cigarette butts waste in environmental engineering application corresponding 50 

to about 14.0% of all the possible applications [2].The utilizations of cigarette filter waste 51 

have been mostly focused in buildings and structures applications.  52 

A large volume of oily wastewater is emitted into the environment. The oily 53 

wastewater is mainly generated from industries such as petrochemical, petroleum 54 

refineries, food manufacturing and metallurgical [3]. Oily wastewater types include 55 

unstable oil/water emulsion (or simply oil/water mixture), stable oil/water emulsion and 56 

free-floating oil [4]. The continuous and increasing discharge of oily wastewater can 57 

severely endanger the ecosystem and pollute the environment. Without proper treatment, 58 

emulsified oily wastewater can contaminate the groundwater resources in which drinking 59 

water and agricultural production are affected [3].  60 

Conventional methods (flotation and coagulation) for treatment of stable oil/water 61 

emulsions are less effective in handling micron-sized emulsion droplets and finely 62 

dispersed oil particles [5]. Membrane-based process is seen as one of the emerging 63 

methods for treating oil/water emulsion wastewater that have shown effective in handling 64 

low concentration of oil (<1000 ppm) in water [6–8]. It outstands the conventional 65 

separation techniques for its simplicity, continuous, faster, and cost-effective due to its 66 

low energy consumption. 67 

The main component of cigarette butt is cellulose acetate (CA) suitable to be 68 

converted into polymeric membrane filter that can be used for oily wastewater treatment. 69 

Cellulose acetate is a cellulose derivative, has been reported to possess good transparency 70 

and mechanical strength. Cigarette filters contain up to 96.0% of cellulose acetate that can 71 

be used to form membrane material, as explored in this study. This way the concept of 72 

circular economy can be implemented by providing opportunity to use the cigarette butt 73 

waste into economically attractive and usable products [9,10].  74 

A recent study showed that cellulose acetate from waste cigarette filter can be used 75 

as raw material for fabrication of nanofiber membrane [11]. The nanofiber achieved 99.9% 76 

of oil droplet separation efficiency when used to treat oil-in-water mixtures. The oil/water 77 

mixture treated in this work was a less challenging feed of an oil/water mixture. A more 78 

challenging feed in the form of oil/water emulsion separation has not been addressed yet. 79 

Electrospun nanofiber membranes are notable for their superiority high efficiency, 80 

simplicity, and low cost [12]. In spite of that, one of the critical limitations of the 81 

electrospun nanofiber membranes is their weak mechanical strength. They cannot be used 82 

as a standalone system without an additional supporting layer and/or post treatment, 83 

normally in a form of non-woven [13,14]. Moreover, the electrospinning process is 84 

relatively slow and requires a longer time to fabricate a membrane. Standard fabrication 85 

time for a sheet of nanofiber net in a lab-scale set-up takes up to 100 hours. Nonetheless, 86 

little attention has been given on other types of membrane fabrication methods to develop 87 

CA-based membrane from waste cigarette filters. Therefore, this study explored the 88 

application of cigarette butt as the polymer-based material for membrane fabrication 89 

through the established phase inversion method [15] for treating the challenging oil/water 90 

emulsion separation. Numerous researches have been conducted to improvise the 91 

properties of the membrane from established polymer, such as polyvinylidene difluoride 92 

(PVDF) and polysulfone (PSF) through modification of fabrication parameters and post- 93 

treatments [16,17].  94 

In this study, we explores utilization of waste cigarette butt as material for fabrication 95 

of phase inverted membranes. The resulting membrane was compared with phase 96 

inverted membrane fabricated from commercial PSF and PVDF polymers. After 97 

fabrication, all membranes were characterized in term of mean flow pore size, surface 98 

contact angle, morphology and clean water permeability. Finally, the filtration 99 
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performance of the membranes were evaluated for filtration of synthetic oil/water 100 

emulsion. This approach epitomized circular economy in which cigarette butt waste was 101 

converted into another valuable material for protecting nature when applied for treating 102 

wastewater. 103 

 104 

2. Materials and Methods 105 

2.1 Materials 106 

The dope solution compositions of the three membranes used in this study are 107 

summarized in Table 1. The detail on fabrication and filtration of the plain PVDF and the 108 

PSF membranes are available in our earlier reports [6,8]. Far fabrication of CA-based 109 

membrane, discarded cigarette filters were collected from public smoking areas. The 110 

collected cigarette filters were first cleaned physically by removing any remaining 111 

tobacco, wrapping papers, and burnt tips. The cigarette filters went through several 112 

cleaning cycles, and each cycle consists of immersing and stirring the filters in boiling 113 

water. They were dried thoroughly at 60°C in an air-circulating oven overnight to remove 114 

the moisture content. Extracted cellulose acetate from waste cigarette filters was dispersed 115 

in N,N-dimethylformamide (DMF, Sigma-Aldrich, USA) solvent and casted atop a 116 

stainless steel mesh (37.0 µm mesh size, Guangzhou, China) to provide mechanical 117 

strength.  118 

Stabilized oil/water emulsion was synthesized according to earlier work [18] using 119 

crude oil (obtained from a crude oil well in Malaysia), distilled water, and sodium dodecyl 120 

sulfate (SDS, 98% purity, Sigma Aldrich). The SDS-to-oil ratio of 1:99 (w/w) was mixed in 121 

water to obtain 1000 ppm stabilized emulsion via mechanical agitation at a stirring rate of 122 

3500 rpm for 24 h. A small volume of feed samples was subsequently analyzed using a 123 

particle size and zeta potential analyzer (Malvern, Zetasizer Nano ZSP, Malvern, United 124 

Kingdom) to map the oil droplet size distribution. The sizes of the droplets were in multi- 125 

modals distribution with peaks at 0.25, 0.9, and 4.0 µm.  126 

 127 

Table 1. Summary of materials and weight percentage in membranes evaluated in this study. 128 

Membrane Polymer 

 

Solvent Additives Support 

CA 10 wt.% of 

CA 

90 wt.% of 

DMF 

- Stainless steel mesh 

PSF 18 wt.% of 

PSF 

80.9 wt.% of 

DMAc 

1 wt.% of PEG 

and 

0.1 wt.% of LiCl 

Nonwoven support 

PVDF 15 wt.% of 

PVDF 

85 wt.% of 

DMAc 

 

- 

Nonwoven support 

CA: cellulose acetate, PSF: polysulfone, PVDF: polyvinylidene difluoride DMF: dimethylformamide, DMAc: dimethylacetamide, 129 

PEG: polyethylene glycol. 130 

2.2 Membrane preparation 131 

For preparation of CA-based membrane, the dope was prepared by dispersing 132 

10 wt.% of cleaned cigarette filters in a corresponding amount of DMF without any 133 

additive (Table 1). The mixture was stirred for 24 h at 60° to ensure the formation of a 134 

homogeneous solution. The solution was degassed for several hours to release the 135 

entrapped air bubbles before being used for membrane fabrication. The CA membrane 136 

was synthesized via the phase inversion method with stainless steel mesh as the support. 137 

The dope solution was poured on top of a flat stainless-steel mesh placed on the glass 138 

plate. The dope solution was cast over the stainless steel mesh using a doctor blade with 139 
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a wet thickness of 330 µm to form a thin film. Subsequently, the casted film and the glass 140 

plate was directly immersed in the non-solvent bath containing deionized water to 141 

undergo the phase inversion. The resulting CA membrane was soaked in deionized water 142 

until further use. 143 

 144 

2.3 Membrane filtration set-up 145 

The filtration system was operated under full recycling mode by constantly returning 146 

the permeate to the feed solution after the volume was periodically (of every 10 mins) 147 

measured. The set-up was used to analyze the membrane filterability performance in 148 

treating synthetic oil/water emulsion. A peristaltic pump was used to provide a constant 149 

transmembrane pressure of 0.2 bar while keeping the feed flowing through the system at 150 

a linear velocity of 13.4 cm.s-1. The prepared membrane with an effective area of 36.5 cm2 151 

was placed in between spacers in a lab-made filtration cell. The filtration was first 152 

conducted using deionized water to determine the clean water permeability of the 153 

membrane. Each filtration test was conducted for 60 minutes in which a queasy steady 154 

state permeability was obtained. 155 

The filtration flux (𝐽𝑠, L m-2 h-1) and permeability (𝐿, L m-2 h-1 bar-1) were calculated 156 

using Equation (1) and (2), respectively: 157 

𝐽𝑠 =
∆𝑉

𝐴𝑠 ∆𝑡
   (1) 

 𝐿 =
𝐽𝑠 

∆𝑃
  (2) 

where ΔV is volume of the collected permeate (L), As is ffective membrane area (m2), ΔP 158 

is transmembrane pressure (0.2 bar) and Δt is filtration time (h). 159 

2.4 Membrane characterization 160 

The microstructures, cross-section and surface morphology images of the resulting 161 

membrane were processed using scanning electron microscope (SEM, Zeiss Evo, 162 

Germany). The samples were coated using gold to enhance the conductivity for obtaining 163 

good images. The pore size distribution of the membranes was determined using capillary 164 

flow porometer (CFP, Porolux 1000, Berlin, Germany). The energy-dispersive X-ray 165 

spectroscopy (EDS) was used to define the elemental composition near the surface of the 166 

membrane samples. The hydrophilicity of the membrane surface was determined by the 167 

static contact angle using goniometer (Ramé-Hart 260, New Jersey, USA). The chemical 168 

bonds of the CA membrane sample were identified using the Fourier transform infrared 169 

spectrometer (FT-IR, Frontier 01 Perkin Elmer) in the spectra wavenumber range of 400 to 170 

4,000 cm-1. The concentration of oil content in the feed before and after the filtration tests 171 

were studied using a UV-VIS spectrometer (Shimadzu UV-2600, Kyoto, Japan) at a 172 

wavelength of 223 nm. 173 

2.5 Membrane fouling identification 174 

Before obtaining the clean water permeability, membrane compaction was 175 

performed for 60 mins. The permeability was measured as average value of the next 30 176 

mins. After measuring the clean water permeability, the filtration of oil/water emulsion 177 

feed was conducted for five cycles. Each cycle comprised of 30 mins filtration, followed 178 

by 5 mins of membrane flushing with deionized water. From the five filtration cycles, 179 

different types of fouling parameters were identified. The total fouling (𝑇𝐹, %), reversible 180 

(𝑅𝐹, %) and irreversible fouling (𝐼𝑅,%) of the membrane were determined using Equations 181 

(3), (4) and (5), respectively:  182 
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𝑇𝐹𝑛 =
𝐿𝑜−𝐿𝑛

𝐿𝑜
   (3) 

 𝑅𝐹𝑛 =
𝐿𝑜(𝑛)−𝐿𝑜(𝑛−1)

𝐿𝑛
  (4) 

𝐼𝑅𝑛 =
𝐿𝑛 − 𝐿𝑜(𝑛)

𝐿𝑛
 

 (5) 

 183 

where n is number of filtration cycle, 𝐿𝑜  is the clean water permeability at the beginning 184 

of the filtration, 𝐿𝑛  is average permeability at cycle n, 𝐿𝑜(𝑛) is the permeability of clean 185 

water at cycle n, 𝐿𝑜(𝑛−1) is the permeability of oil-in-water emulsion filtration at cycle n-1. 186 

 187 

3. Results and Discussion 188 

3.1 Surface and cross-section morphologies 189 

 190 

   
(a) (b) (c) 

   
(d) (e) (f) 

 191 

Figure 1. Surface SEM images of (a) cellulpse acetate (CA); (b) polysulfone (PSF); (c) polyvinylidene difluoride (PVDF) membranes 192 

and cross-section SEM images of (d) CA; (e) PSF; (f) PVDF membranes.  193 

Figure 1 shows the morphological structure of the developed CA, PSF and PVDF 194 

membranes. Based on the top surface SEM images, all samples pose visible surface pores 195 

homogeneously distributed. They show typical morphology of membranes prepared by 196 

non-solvent induced phase separation. Most importantly, the CA membrane, despite 197 

being prepared from waste cigarette filter, also poses good surface property like the ones 198 

prepared from the commercial PVDF and PSF polymer, typically used for membranes 199 

fabrication. The finding on the microstructure suggesting the potential of waste cigarette 200 

filter for membrane fabrication, which can be applied for oil/water emulsion filtration. 201 

The surface pores are within a size range far below most of the oil droplets presented in 202 

the oil/water emulsion feed used in this study. 203 

The cross-section images of all membranes show of equally asymmetrical 204 

morphology, a typical structure of membranes prepared from non-solvent induced phase 205 

separation under instantaneous demixing [19], in which a dense surface morphology is 206 

supported by a more porous structure underneath. The large surface pores of the CA 207 

membrane are all within the microfiltration range, also suggest the instantaneous 208 

demixing phase separation mechanism. Recent report on fabrication of CA membrane 209 

from commercial CA polymer showed symmetric morphology, since it was prepared 210 
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from different solvent/nonsolvent systems and different polymer concentrations [20]. 211 

Detailed discussion on relationships between polymer/solvent/nonsolvent system can be 212 

found elsewhere [17,20,21]. The finding suggests that irrespective of the source (i.e., waste 213 

cigarette butt), CA membrane could be prepared using the phase inversion method 214 

resulting reliable membrane effectively used for filtration as demonstrated in Section 3.7. 215 

3.2 Membrane pore size and distribution 216 

 217 

 218 

Figure 2. The pore size distribution of the developed cellulose acetate (CA), polysulfone (PSF) and 219 

polyvinylidene difluoride (PVDF) membranes. 220 

 221 

Figure 2 shows the pore size distribution of the three membrane samples evaluated 222 

using a CFP. The cigarette butt–based CA membrane poses a high pore size population at 223 

around 0.10-0.15 µm. The pore size range of the cigarette butt–based CA membrane are 224 

suitable to handle the oil/water emulsion because the pores theoretically could retained 225 

emulsion droplets with sizes larger than the membrane pore sizes. The sizes of the oil 226 

droplets in emulsion are normally in the range of 0.1 to 10 µm [22]. Most of the oil droplets 227 

can be effectively removed with a membrane of pore size in the range of 2 to 100 nm. The 228 

membrane works based on the size exclusion theory, in which the membrane material 229 

rejects particles larger than the pore size. Higher mean flow pore sizes are shown by the 230 

PSF and PVDF membranes at 0.127 and 0.210 µm, respectively. It was reported that the 231 

typical commercial microfiltration CA-based membrane has a pore size of 0.470 µm [23], 232 

most likely because of some differences in fabrication parameters. Indeed, further 233 

exploration can still be done to fine tune the properties of a cigarette butt CA-based 234 

membranes according to the required specifications as suggested elsewhere [24–26].  235 

 236 

 237 

Figure 3. The mean pore size distribution of the cellulose acetate (CA), polysulfone (PSF) and 238 

polyvinylidene difluoride (PVDF) membranes. 239 
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Figure 3 depicts the mean pore size distribution of CA, PSF, and plain PVDF analyzed 240 

with CFP. The CFP test capture accurately the pore size across the thickness and the size 241 

distribution as shown in Figure 2. It shows that the plain PVDF membrane exhibits the 242 

largest mean flow pore size of 0.2206 µm in comparison to CA and PSF with mean flow 243 

pore size of 0.17 and 0.1556 µm respectively. The SEM images of the plain PVDF 244 

membrane show poor surface pore visibility. Figure 3 shows that the pore size of the 245 

membranes are comparable and all are expected to effectively retain oil droplets in the 246 

oil/water emulsion feeds. In addition to the mean flow pore size and pore size distribution, 247 

the specific number of pore per unit of membrane surface is also important to govern the 248 

permeability and can distinguish the throughput of membranes despite of having about 249 

similar pore size and distributions. 250 

3.3 Surface contact angle 251 

 252 

Figure 4. Static contact angle of the developed cellulose acetate (CA), polysulfone (PSF) and 253 

polyvinylidene difluoride (PVDF) membranes. 254 

 255 

Figure 4 shows the static water contact angle for the three membrane samples used 256 

in this study. The static water contact angle is essential in determining the permeability 257 

and fouling properties of a membrane. A membrane is considered hydrophilic when the 258 

contact angle falls between 0° to 90°. Membranes with hydrophilic properties are ideal in 259 

oil/water emulsion treatment when water is the component that permeating through the 260 

membrane pore, and vice versa [27,28]. Hydrophilic surface attracts water by creating 261 

hydration layer and prevents interaction of oil droplet with the membrane surface, hence 262 

also improve oil droplets rejection [29]. As shown in Figure 4, PVDF membrane 263 

demonstrates the most hydrophobic characteristic with a water contact angle of 81.59°, 264 

attributed to the polymer low surface free energy [30]. This is followed by CA and PSF 265 

membranes with the surface water contact angles of 74.5° and 70.23°, respectively. The 266 

surface water contact angle of plain CA membrane from commercial polymers in this 267 

study is within the range reported earlier of 50-60° [31–33], which can be attributed to 268 

variation surface structure and fabrication parameters and possibly due to presence of 269 

impurities that can be further investigated as the follow up study. These findings are 270 

encouraging and show a CA membrane based from cigarette butt waste potentially 271 

possess a high clean water permeability and good anti fouling property, at least when 272 

compared with the PVDF and PSF membranes samples used as reference in this study.  273 

3.4 Fourier transform infrared 274 
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 275 

Figure 5. FT-IR spectra of the cellulose acetate membrane. 276 

 277 

The FT-IR spectra in Figure 5 depicts the chemical composition of the prepared 278 

cigarette butt-based CA membrane. The FT-IR spectrum of CA shows a peak absorption 279 

band at 1747, 1230, and 1050 cm-1 which is assigned to the C=O carbonyl stretching, C-O 280 

stretching, and CO-O-CO stretching. The peaks at 1371 and 2920 cm−1 is attributed to the 281 

C-O group and aliphatic group (C-H), respectively. And broad peak at around 3500 cm-1 282 

represent the O-H group. Similar findings was reported by Liu et al. that attributed the 283 

presence of carbonyl stretching, symmetric, and asymmetric stretching vibrations of C-O- 284 

C, respectively in nanofiber membrane from waste cigarette filter [11].  285 

The spectra shown in Figure 5, resemble the one obtained for phase inverted 286 

membrane prepared from commercial CA polymer [33,34]. The presence of impurities is 287 

hardly seen from the spectra indicating that the spectra associate with them might be 288 

overlapping with spectra associated with CA. Visually, the presence of impurities could 289 

be seen from the grey color of the cigarette butt CA-based membrane. The presence of 290 

impurities might affect the resulting membrane properties (i.e., higher water contact 291 

angle) and the purification process is thus recommended as the follow-up studies. 292 

Polymer purification was shown effective in improving the structure and performance of 293 

the resulting membranes [35]. 294 

3.5 Energy Dispersive X-Ray Spectroscopy  295 

Table 2 shows the distribution of elemental composition for CA, PSF, and PVDF 296 

membranes obtained from EDS mapping. It is observed that the oxygen, originating from 297 

the hydroxyl group in CA has the highest composition at 48.2%. It is slightly higher than 298 

the one obtained from X-ray photoelectron spectroscopy of 42.0% obtained elsewhere 299 

[33].This result indicated the presence of hydrophilic functional groups in the CA 300 

membrane, which justifies the CA membrane has higher hydrophilicity properties than 301 

the PSF and the PVDF membranes. The presence of carbon and oxygen is supported by 302 

FT-IR analysis. In contrast, the static contact angle measurement suggests that the PVDF 303 

membrane demonstrates the most hydrophilic characteristic with a contact angle of water 304 

of 81.59°. The abundance of oxygen element in the CA membrane can further be explored 305 

to enhance the surface hydrophilicity. 306 

 307 

Table 2. The elemental composition of the cellulose acetate (CA), polysulfone (PSF), and 308 

polyvinylidene difluoride (PVDF) membranes. 309 

Membrane        Composition (%) 

C F O S 
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CA 51.60 0.00 48.20 0.00 

PSF 69.02 0.00 26.05 4.92 

PVDF 55.55 42.84 1.61 0.00 

3.6 Clean water permeability 310 

 311 

 312 

Figure 6. Clean water permeability of the cellulose acetate (CA), polysulfone (PSF), and 313 

polyvinylidene difluoride (PVDF) membranes. 314 

 315 

Figure 6 shows that the CA membrane outperforms the rests in terms of filtration 316 

performance by having the highest permeability compared to PSF and PVDF membranes. 317 

The clean water permeability involves the passage of water molecules through the 318 

membrane under crossflow filtration. The CA membrane showed the water permeability 319 

of 1658 L m-2 h-1 bar-1 significantly higher than the PSF and PVDF membranes clean water 320 

permeability of 446 L m-2 h-1 bar-1 and 175 L m-2 h-1 bar-1, respectively.  321 

When considering the pore size and distribution of the three membrane samples 322 

evaluated in this study, significantly high permeability shown by CA membrane can be 323 

ascribed by their low surface water contact angle (Figure 4) combined with higher surface 324 

pore population. Some membranes can show similar pore size and distribution but differ 325 

in pore number as detailed in earlier report [36]. When evaluating the surface SEM image 326 

in Figure 1, it can be seen that surface pores of the CA membrane are highly populated in 327 

comparison with the rests.  328 

3.7 Filtration performance 329 
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 330 

Figure 7. The permeability of the cellulose acetate (CA), polysulfone (PSF), and polyvinylidene 331 

difluoride (PVDF) membranes for five cycles in thirty minutes oil-in-water emulsion and five 332 

minutes in clean water as a function of filtration time. 333 

 334 

Figure 7 shows that the CA poses the highest oil/water emulsion permeability for the 335 

first 50 min of filtration, maintained at a value of 180 L m-2 h-1 bar-1 at the end of the 336 

subsequent filtration cycles. The high performance of the CA membrane can be attributed 337 

to the high oxygen content in the membrane that imposes surface hydrophilicity which is 338 

beneficial for repelling deposited oil droplets when treating the oil/water emulsion and 339 

forming hydration layer on the membrane surface [29]. The membrane surface has high 340 

surface porosity (from high number of surface pore, see ), as shown on the SEM images in 341 

Figure 1, which could offer a better oil/water emulsion permeability compared to the PSF 342 

and the PVDF membranes. The clean water flushing introduced at each filtration cycle 343 

helps to improve the permeability of the membrane and remove the oily foulant and 344 

reduce the fouling effect on the membrane. It can be observed the water flushing at cycle 345 

2, 3, 4, and 5 improve the subsequent permeability of the membrane in oil/water emulsion. 346 

However, the water flushing in cycle 1 does not exhibit an increase of permeability. This 347 

may occur due to the strong oil adhesion on the membrane surface that has caused the 348 

emulsion permeability to suffer a dramatic decrease.  349 

In another study, the permeability of the oil/water emulsion for commercial CA 350 

membrane in the first cycle is 1900 Lm-2 h-1 bar-1. After the first flushing, the permeability 351 

decreased significantly to 370 Lm-2 h-1 bar-1, following the third cycle of 90 Lm-2 h-1 bar-1. 352 

The subsequent cycles show no permeability which demonstrated the oil particles have 353 

wholly clogged the membrane pores suggesting severe membrane fouling also happen to 354 

a plain CA membrane made from commercial polymer [23]. Although the commercial CA 355 

membrane has a high permeability at the initial phase, it is worth noting that the 356 

permeability had a steep decrease. When compared to CA membrane from cigarette 357 

waste, the developed membrane exhibited a relatively slow decrease in the whole five 358 

cycles. This constitutes an interesting phenomenon as the developed CA is made of 359 

cigarette filter waste. Further comparison with PSF and PVDF membranes optimized for 360 

oil/water emulsion filtration reported earlier [6,37], the permeability is comparable with 361 

the plain CA membranes developed from cigarette butt waste reported in the present 362 

study. It suggests that the CA-based membrane from cigarette butt, can further be 363 

developed to enhance its filtration performance via fabrication parameter optimization or 364 

surface modifications.  365 
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3.8 Rejection performance 366 

 367 

 368 
Figure 8. The oil rejection of PW filtration using the cellulose acetate (CA), polysulfone (PSF), and 369 

polyvinylidene difluoride (PVDF) membranes. 370 

 371 
To evaluate the oil separation efficiency, the oil rejection performances of the CA 372 

membrane was evaluated and compared with PSF and PVDF membranes. The CA 373 

membrane exhibits an excellent total oil rejection of 91.5%. This shows that the CA 374 

membrane developed from cigarette waste is comparable to the established PSF 375 

membrane that has achieved the rejection efficiency of 94.0%. In addition, CA could be a 376 

promising candidate in achieving a large-scale separation of oil/water emulsion for its 377 

greater oil rejection than the PVDF membrane. A study by Liu et al. found that the 378 

stainless steel mesh (size 300 and 2300) alone could not separate the oil/water mixture well 379 

as the oil and water passed through the mesh unobstructively [11].  380 

A similar study by Ifelebuegu et.al using waste cigarette fiters in oil spill clean-up 381 

found that waste filters adsorbed 16 to 26 times their weights in various oils, which is a 382 

better oil sorption performance than those commercial adsorbents. It also reported that 383 

the sorption capacity did not significantly deteriorate after 20 cycles of reuse, with up to 384 

75% sorption capacity retained [38]. Nair reported the highest absorption of dye using the 385 

CA membrane prepared from cigarette buds was obtained in slightly acidic condition 386 

with the pH of 6.15 [39].  387 

The finding suggest the effectiveness of the developed CA membrane to separate oil 388 

droplets. The good separation can be ascribed from the relative large difference between 389 

the mean flow pore size of 0.17 µm and most of the oil droplets >0.25 µm. Those 390 

differences allows the separation through size exclusion mechanisms in which oil droplets 391 

were retained on the top of the membrane surface [28,40].  392 

3.9 Membrane fouling analysis 393 
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 394 

Figure 9. The evolution of membrane fouling in terms of reversible and irreversible fouling. 395 

 396 

Figure 9 shows the analysis of membrane fouling based on its reversibility for CA in 397 

comparison with the PSF and the PVDF membranes. As expected, the total fouling for all 398 

three types of membranes showed an increasing trend with the increasing filtration cycles. 399 

The trend of multiple cycle performance is consistent with our earlier report treating the 400 

same feed following similar filtration cycles [6,8,37,41]. The three membranes pose quite 401 

distinct fouling reversibility. The total fouling depicted by PVDF at each cycle is relatively 402 

lower than the PSF and the CA membranes indicating a lower degree of permeability loss 403 

and better antifouling properties. However, when judging from the actual permeability 404 

data in Figure 7, the performance of PVDF membrane is comparable with the CA 405 

membrane. The low degree of fouling in PVDF membrane in comparison to others is due 406 

to its relatively low clean water permeability in comparison to others (Figure 6). Therefore, 407 

the fouling parameters become low since the oil/water emulsion permeability was 408 

compared to the initial clean water permeability (Equations 3-5). On the contrary, both 409 

CA and PSF demonstrated a high total fouling since they pose high clean water 410 

permeability accompanied by about similar oil/water emulsion permeability. 411 

It is observed from Figure 9 that the membrane fouling in CA and PSF are dominated 412 

irreversible fouling. The CA suffers a relatively high degree of irreversible fouling since 413 

the first filtration cycle. It should also be noted that CA has five folds higher clean water 414 

permeability than PSF and PVDF at the initial cycle. It is speculated that the high fouling 415 

rate of CA was caused by the rapid compaction of permanent foulant trapped in the pores 416 

occurred during the first cycle resulting in a lower oil/water emulsion permeability. After 417 

the first cycle, the rate of foulant accumulation is very small indicating that the foulant 418 

was well consolidated. The finding indicate the possibility for further development of 419 

phase inverted cigarette butt-based CA membrane focusing on combating the irreversible 420 

fouling. As demonstrated in earlier report, incorporation of zirconia (ZrO2) particles in 421 

CA casting solution resulted in a decrease in fouling resistance. The total fouling 422 
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resistance for pure CA membrane is 7.19 × 1010 m-1. The addition of 7 wt.% of ZrO2 423 

decreased the total fouling resistance to 2.58 × 1010 m-1 [42]. This may due to the increase 424 

in hydrophilicity of CA membrane which increases the interaction of the molecules on 425 

membrane surface. 426 

5. Conclusions 427 

This study unravels the potential of CA from cigarette filter waste as material for 428 

membrane fabrication for oil/water emulsion treatment. This utilization of waste can 429 

alleviate the environmental problems from cigarette filter waste as well tackling the issue 430 

of oil/water emulsion. The CA-based membrane was successfully fabricated via the phase 431 

inversion method with typical structure formed from instantaneous demixing process. 432 

The findings show that CA membrane poses hydrophilicity properties with contact angle 433 

of 74.5°, lower than both PVDF and PSF membranes used as reference. The pore size and 434 

distribution are suitable for oil/water separation. Despite being prepared from waste 435 

cigarette, CA also poses good surface property similar to the ones prepared from 436 

commercial PVDF and PSF polymer with equally asymmetric morphology. The pore size 437 

of CA demonstrates the CA is within the microfiltration range. The developed CA 438 

membrane shows a promising flux of 180 Lm-2 h-1 after multiple filtration cycles of 439 

oil/water emulsion. However, it still suffers a high degree of irreversible fouling (>90.0%), 440 

suggesting potential for future improvement through optimization of fabrication 441 

parameters or via surface modification. Overall results demonstrate a sustainable 442 

approach in handling oil/water emulsion pollution issue by treatment using CA 443 

membrane derived from cigarette butt waste. 444 
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Abstract: The increasing rate of oil and gas production has contributed to a release of oil/water
emulsion or mixtures to the environment, becoming a pressing issue. At the same time, pollution
of the toxic cigarette butt has also become a growing concern. This study explored utilization of
cigarette butt waste as a source of cellulose acetate-based (CA) polymer to develop a phase inverted
membrane for treatment of oil/water emulsion and compare it with commercial polyvinylidene
difluoride (PVDF) and polysulfone (PSF). Results show that the CA-based membrane from waste
cigarette butt offers an eco-friendly material without compromising the separation efficiency, with
a pore size range suitable for oil/water emulsion filtration with the rejection of >94.0%. The CA
membrane poses good structural property similar to the established PVDF and PSF membranes
with equally asymmetric morphology. It also poses hydrophilicity properties with a contact angle of
74.5◦, lower than both PVDF and PSF membranes. The pore size of CA demonstrates that the CA is
within the microfiltration range with a mean flow pore size of 0.17 µm. The developed CA membrane
shows a promising oil/water emulsion permeability of 180 L m−2 h−1 bar−1 after five filtration
cycles. However, it still suffers a high degree of irreversible fouling (>90.0%), suggesting potential
future improvements in terms of membrane fouling management. Overall, this study demonstrates
a sustainable approach to addressing oil/water emulsion pollution treated CA membrane from
cigarette butt waste.

Keywords: cellulose acetate; cigarette waste; membrane fabrication; crossflow filtration; oily wastew-
ater; phase inversion

1. Introduction

Trillions of cigarette butts are hazardous material deposited annually in the environ-
ment [1], and they have been identified as the most littered item worldwide [2]. During the
year 2016, 5.7 trillion cigarettes were consumed worldwide, and about 97% of the cigarette
filters were composed of cellulose acetate, a modified natural polymer [3]. This figure is
expected to increase by 1.6 times in 2025 [4]. The scientific community has been actively
seeking economical and sustainable solutions to tackle the cigarette butt waste pollution
issue. To date, the alternatives to handle the pollution include degradation, incineration,
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recycling, and landfilling. Several studies on converting the waste cigarette butts into us-
able products were made in various fields, mainly in environmental engineering, buildings
and infrastructures, energy storage devices, insecticide, and metallurgical industry [5,6].
The analysis of the potential recycling cigarette butt waste in environmental engineering
applications corresponds to about 14.0% of all the possible applications [5]. The utilizations
of cigarette butt waste have been mostly focused on buildings and structure applications.

A large volume of oily wastewater is emitted into the environment. The oily wastewa-
ter is mainly generated from industries such as petrochemical, petroleum refineries, food
manufacturing, and metallurgical [7]. Oily wastewater types include unstable oil/water
emulsion (or simply oil/water mixture), stable oil/water emulsion, and free-floating oil [8].
The continuous and increasing discharge of oily wastewater can severely endanger the
ecosystem and pollute the environment. Without proper treatment, emulsified oily wastew-
ater can contaminate the groundwater resources in which drinking water and agricultural
production are affected [7].

Conventional methods (flotation and coagulation) for the treatment of stable oil/water
emulsions are less effective in handling micron-sized emulsion droplets and finely dis-
persed oil particles [9]. The membrane-based process is seen as one of the emerging
methods for treating oil/water emulsion wastewater that has been shown effective in han-
dling low concentration of oil (<1000 ppm) in water [10–12]. It outstands the conventional
separation techniques for simplicity, continuous, faster, and cost-effectiveness due to their
low energy consumption.

The main component of cigarette butt is cellulose acetate (CA) [13], suitable to be
converted into polymeric membrane for liquid-based filtration [14]. Cellulose acetate
is a cellulose derivative, which possesses good transparency and mechanical strength.
Almost 90% of cigarettes are manufactured with cellulose acetate filter tips (cigarette
butt) [15]. Cigarette butts contain up to 96.0% of cellulose acetate that can be used to
form the membrane material, as explored in this study. This way, the circular economy
concept can be implemented by providing the opportunity to use cigarette butt waste into
economically attractive and usable products [16,17].

A recent study showed that cellulose acetate from waste cigarette butt can be used
as raw material for the fabrication of nanofiber membrane [18]. The nanofiber achieved
99.9% of oil droplet separation efficiency when used to treat oil-in-water mixtures. The
oil/water mixture treated in this work was a less challenging feed of an oil/water mix-
ture. A more challenging feed in the form of oil/water emulsion separation has not been
addressed yet. Electrospun nanofiber membranes are notable for their superiority, high
efficiency, simplicity, and low cost [19]. Despite that, one of the critical limitations of the
electrospun nanofiber membranes is their weak mechanical strength. They cannot be used
as a standalone system without an additional supporting layer and/or post-treatment,
normally in the form of non-woven membranes [20,21]. Moreover, the electrospinning
process is relatively slow and requires a longer time to fabricate a membrane. The stan-
dard fabrication time for a sheet of nanofiber net in a lab-scale setup takes up to 100 h.
Nonetheless, little attention has been given to other types of membrane fabrication meth-
ods to develop CA-based membranes from waste cigarette butts. Therefore, this study
explored the application of cigarette butt as the polymer-based material for membrane
fabrication through the established phase inversion method [22] for treating the challenging
oil/water emulsion separation. Numerous researches have been conducted to improvise
the properties of the membrane from an established polymer, such as polyvinylidene
difluoride (PVDF) and polysulfone (PSF) through modification of fabrication parameters
and post-treatments [23,24].

In this study, we explore the utilization of waste cigarette butt as material for the
fabrication of phase inverted membranes. The resulting membrane was compared with
the phase inverted membrane fabricated from commercial PSF and PVDF polymers, both
polymers are the most used in the commercial membranes for low-pressure filtration
(i.e., membrane bioreactor) [25]. After fabrication, all the membranes were characterized
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in terms of mean flow pore size, surface contact angle, morphology, and clean water
permeability. Finally, the filtration performance of the membranes was evaluated for
filtration of synthetic oil/water emulsion. This approach epitomized a circular economy
in which cigarette butt waste was converted into another valuable material for protecting
nature when applied for treating wastewater.

2. Materials and Methods
2.1. Materials

The dope solution compositions of the three membranes used in this study are sum-
marized in Table 1. The detail on fabrication and filtration of the plain PVDF and the PSF
(Mw = 35,000 g/mol, Sigma Aldrich, St Louis, MO, USA) membranes are available in our
earlier reports [10,12]. For fabrication of CA-based membrane, discarded cigarette butts
were collected from public smoking areas. There was no specific criterion for pre-screening
of the cigarette butts collection. The collected cigarette butts were first cleaned physically
by removing any remaining tobacco, wrapping papers, and burnt tips. The cigarette butts
went through several cleaning cycles, and each cycle consists of immersing and stirring
the butts in boiling water. They were dried thoroughly at 60 ◦C in an air-circulating oven
overnight to remove the moisture content. The cleaned cigarette butts were dispersed in
N,N-dimethylformamide (DMF, Sigma-Aldrich, St Louis, MO, USA) solvent and cast atop
a stainless steel mesh (37.0 µm, Guangzhou, China) to provide mechanical strength.

Table 1. Summary of materials and weight percentage in membranes evaluated in this study.

Membrane Polymer Solvent Additives Support

CA 10 wt% of CA 90 wt% of DMF - Stainless steel mesh
PSF 18 wt% of PSF 80.9 wt% of DMAc 1 wt% of PEG and 0.1 wt% of LiCl Non-woven support

PVDF 15 wt% of PVDF 85 wt% of DMAc - Non-woven support

CA: Cellulose acetate; PSF: Polysulfone; PVDF: Polyvinylidene difluoride; DMF: Dimethylformamide; DMAc: Dimethylacetamide; PEG:
Polyethylene glycol.

The stabilized oil/water emulsion was synthesized according to an earlier work [26]
using crude oil (obtained from a crude oil well in Malaysia), distilled water, and sodium
dodecyl sulfate (SDS, 98% purity, Sigma-Aldrich, St Louis, MO, USA). The SDS-to-oil ratio
of 1:99 (w/w) was mixed in water to obtain 1000 ppm stabilized emulsion via mechanical
agitation at a stirring rate of 3500 rpm for 24 h. A small volume of feed samples was
subsequently analyzed to map the oil droplet size distribution. The sizes of the droplets
were in multi-modals distribution with peaks at 0.25, 0.9, and 4.0 µm.

2.2. Membrane Preparation

For the preparation of CA-based membrane, the dope was prepared by dispersing
10 wt% of the cleaned cigarette butt in a corresponding amount of DMF without any
additive (Table 1). The mixture was stirred for 24 h at 60 ◦C to ensure the formation
of a homogeneous solution. The solution was degassed for several hours to release the
entrapped air bubbles before being used for membrane fabrication. The CA membrane
was synthesized via the phase inversion method with stainless steel mesh as the support
according to the method illustrated in Figure 1. The dope solution was poured on top
of a flat stainless-steel mesh placed on the glass plate. The dope solution was cast over
the stainless steel mesh using a doctor blade with a wet thickness of 330 µm to form a
thin film. Subsequently, the casted film and the glass plate were directly immersed in the
non-solvent bath containing deionized water to undergo the phase inversion. The resulting
CA membrane was soaked in deionized water until further use.
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Figure 1. An illustration of phase inversion method for membrane fabrication applied in the
present study.

2.3. Membrane Filtration Setup

The filtration system was operated under full recycling mode by constantly returning
the permeate to the feed solution after the volume was periodically (of every 10 min)
measured. The setup was used to analyze the membrane filtration performance in treating
synthetic oil/water emulsion. A peristaltic pump was used to provide a constant trans-
membrane pressure of 0.2 bar, while keeping the feed flowing through the system at a
linear velocity of 13.4 cm s−1. The prepared membrane with an effective area of 36.5 cm2

was placed in between spacers in a lab-made filtration cell. The filtration was first con-
ducted using deionized water to determine the clean water permeability of the membrane.
Each filtration test was conducted for 60 min, in which a queasy steady-state permeability
was obtained.

The filtration flux (Js, L m−2 h−1) and permeability (L, L m−2 h−1 bar−1) were calcu-
lated using Equations (1) and (2), respectively:

Js =
∆V

As∆t
(1)

L =
Js

∆P
(2)

where ∆V is the volume of the collected permeate (L), As is the effective membrane area
(m2), ∆P is the transmembrane pressure (0.2 bar), and ∆t is the filtration time (h).

2.4. Membrane Characterization

The microstructures, cross-section, and surface morphology images of the resulting
membrane were processed using a scanning electron microscope (SEM, Zeiss Evo, Germany).
The samples were coated using gold to enhance the conductivity for obtaining good images.
The pore size distribution of the membranes was determined using a capillary flow porometer
(CFP, Porolux 1000, Berlin, Germany). The energy-dispersive X-ray spectroscopy (EDS) was
used to define the elemental composition near the surface of the membrane samples. The
hydrophilicity of the membrane surface was determined by the static contact angle using a
goniometer (Ramé-Hart 260, Succasunna, NJ, USA). The chemical bonds of the CA membrane
sample were identified using the Fourier transform infrared spectrometer (FT-IR, Frontier
01 Perkin Elmer) in the spectra wavenumber range of 400 to 4000 cm−1. The concentration
of oil content in the feed before and after the filtration tests were studied using a UV-VIS
spectrometer (Shimadzu UV-2600, Kyoto, Japan) at a wavelength of 223 nm.

2.5. Membrane Fouling Identification

Before obtaining the clean water permeability, membrane compaction was performed for
60 min. The permeability was measured as the average value of the next 30 min. After measur-
ing the clean water permeability, the filtration of oil/water emulsion feed was conducted for
five cycles. Each cycle comprised of 30 min filtration, followed by 5 min of membrane flushing
with deionized water. From the five filtration cycles, different types of fouling parameters
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were identified. The total fouling (TF, %), reversible (RF, %), and irreversible fouling (IR, %)
of the membrane were determined using Equations (3)–(5), respectively:

TFn =
Lo − Ln

Lo
(3)

RFn =
Lo(n) − Lo(n−1)

Ln
(4)

IRn =
Ln − Lo(n)

Ln
(5)

where n is the number of filtration cycle, Lo is the clean water permeability at the beginning
of the filtration, Ln is the average permeability at cycle n, Lo(n) is the permeability of clean
water at cycle n, andLo(n−1) is the permeability of oil/water emulsion filtration at cycle
n − 1.

3. Results and Discussion
3.1. Surface and Cross-Section Morphologies

Figure 2 shows the morphological structure of the developed CA, PSF, and PVDF
membranes. Based on the top surface SEM images, all the samples pose visible surface
pores homogeneously distributed. They show the typical morphology of membranes
prepared by non-solvent induced phase separation. Most importantly, despite being
prepared from waste cigarette butt, the CA membrane also poses a good surface property
such as the one prepared from the commercial PVDF and PSF polymer, typically used
for membranes fabrication. The finding on the microstructure suggests the potential of a
waste cigarette butt for membrane fabrication, which can be applied for oil/water emulsion
filtration. The surface pores are within a size range far below most of the oil droplets
presented in the oil/water emulsion feed used in this study.
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The cross-section images of all the membranes show equally asymmetrical morphol-
ogy, a typical structure of membranes prepared from non-solvent induced phase separation
under instantaneous demixing [27], in which a dense surface morphology is supported
by a more porous structure underneath. The large surface pores of the CA membrane
are all within the microfiltration range, which also suggests the instantaneous demixing
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phase separation mechanism. A recent report on the fabrication of CA membrane from
the commercial CA polymer showed symmetric morphology since it was prepared from
different solvent/nonsolvent systems and different polymer concentrations [14]. A detailed
discussion on the relationships between the polymer/solvent/nonsolvent system can be
found elsewhere [14,24,28]. The finding suggests that irrespective of the source (i.e., waste
cigarette butt), the CA membrane could be prepared using the phase inversion method
resulting in the reliable membrane effectively being used for filtration, as demonstrated
in Section 3.7.

3.2. Membrane Pore Size and Distribution

Figure 3 shows the pore size distribution of the three membrane samples evaluated
using a CFP. The y-axis of the figure shows the actual distribution of pore of certain size,
not the frequency distribution found in a typical histogram. The pore distribution of
all membrane samples skews to the left indicating higher populations of smaller pores.
The cigarette butt-based CA membrane poses a high pore size population at around
0.10–0.15 µm. The pore size range of the cigarette butt-based CA membrane is suitable
for handling the oil/water emulsion since the pores theoretically could retain emulsion
droplets with sizes larger than the membrane pore sizes. The sizes of the oil droplets
in emulsion are normally in the range of 0.1 to 10 µm [29]. Most of the oil droplets can
be effectively removed with a membrane of pore size in the range of 2 to 100 nm. The
membrane works based on the size exclusion theory, in which the membrane material
rejects particles larger than the pore size. Higher mean flow pore sizes are shown by the PSF
and PVDF membranes at 0.127 and 0.210 µm, respectively. It was reported that the typical
commercial microfiltration CA-based membrane has a pore size of 0.470 µm [30], most
likely due to some differences in fabrication parameters. Indeed, further exploration can
still be done to fine-tune the properties of a cigarette butt CA-based membrane according
to the required specifications, as suggested elsewhere [31–33].
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Figure 4 depicts the mean pore size distribution of CA, PSF, and plain PVDF analyzed
with CFP. The CFP test accurately captures the pore size across the thickness and the
size distribution shown in Figure 3. It shows that the plain PVDF membrane exhibits
the largest mean flow pore size of 0.2206 µm in comparison to CA and PSF, with a mean
flow pore size of 0.17 and 0.1556 µm, respectively. The SEM images of the plain PVDF
membrane show poor surface pore visibility. Figure 4 shows that the pore size of the
membranes is comparable and all are expected to effectively retain oil droplets in the
oil/water emulsion feeds. In addition to the mean flow pore size and pore size distribution,
the specific number of pore per unit of membrane surface is also important to govern the
permeability and can distinguish the throughput of membranes despite having a similar
pore size and distribution.
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3.3. Surface Contact Angle

Figure 5 shows the static water contact angle for the three membrane samples used
in this study. The static water contact angle is essential in determining the permeability
and fouling properties of a membrane. A membrane is considered hydrophilic when the
contact angle falls between 0 to 90◦. Membranes with hydrophilic properties are ideal in
the oil/water emulsion treatment when water is the component that is permeating through
the membrane pore and vice versa [34,35]. The hydrophilic surface attracts water by
creating a hydration layer and prevents oil droplet interaction with the membrane surface,
hence improving oil droplet rejection [36]. As shown in Figure 5, the PVDF membrane
demonstrates the most hydrophobic characteristic with a water contact angle of 81.59◦,
attributed to the low polymer surface free energy [37]. This is followed by CA and PSF
membranes with the surface water contact angles of 74.5 and 70.23◦, respectively. The
surface water contact angle of plain CA membrane from commercial polymers in this
study is within the range reported earlier of 50–60◦ [38–40], which can be attributed to the
variation surface structure and fabrication parameters and possibly due to the presence
of impurities that can be further investigated as the follow-up study. These findings are
encouraging and show that a CA membrane based from cigarette butt waste potentially
possess a high clean water permeability and good anti-fouling property, at least when
compared with the PVDF and PSF membranes samples used as a reference in this study.
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3.4. Fourier Transform Infrared

The FT-IR spectra in Figure 6 depicts the chemical composition of the prepared
cigarette butt-based CA membrane. The FT-IR spectrum of CA shows a peak absorption
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band at 1747, 1230, and 1050 cm−1 which is assigned to the C=O carbonyl stretching, C–O
stretching, and CO–O–CO stretching. The peaks at 1371 and 2920 cm−1 are attributed to
the C–O group and aliphatic group (C–H), respectively. Additionally, the broad peak at
around 3500 cm−1 represents the O–H group. Similar findings were reported by Liu et al.
that attributed the presence of carbonyl stretching, symmetric, and asymmetric stretching
vibrations of C–O–C, respectively, in the nanofiber membrane from waste cigarette butt [18].
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The spectra shown in Figure 6 resemble the one obtained for the phase inverted
membrane prepared from the commercial CA polymer [40,41]. The presence of impurities
is hardly seen from the spectra, indicating that the spectra associated with them might
be overlapping with the spectra associated with CA. Visually, the presence of impurities
could be seen from the grey color of the cigarette butt CA-based membrane. The presence
of impurities might affect the resulting membrane properties (i.e., higher water contact
angle) and the purification process is thus recommended as the follow-up studies. Poly-
mer purification was shown effective in improving the structure and performance of the
resulting membranes [42].

3.5. Energy Dispersive X-ray Spectroscopy

Table 2 shows the distribution of elemental composition for CA, PSF, and PVDF
membranes obtained from EDS mapping. It is observed that the oxygen originating from
the hydroxyl group in CA has the highest composition at 48.2%. It is slightly higher than
the one obtained from X-ray photoelectron spectroscopy of 42.0% obtained elsewhere [40].
This result indicated the presence of hydrophilic functional groups in the CA membrane,
which justifies that the CA membrane has higher hydrophilicity properties than the PSF
and the PVDF membranes. The presence of carbon and oxygen is supported by the FT-
IR analysis. In contrast, the static contact angle measurement suggests that the PVDF
membrane demonstrates the most hydrophilic characteristic with a contact angle of water
of 81.59◦. The abundance of oxygen element in the CA membrane can further be explored
to enhance the surface hydrophilicity.

Table 2. The elemental composition of the cellulose acetate (CA), polysulfone (PSF), and polyvinyli-
dene difluoride (PVDF) membranes.

Membrane
Composition (%)

C F O S

CA 51.60 0.00 48.20 0.00
PSF 69.02 0.00 26.05 4.92

PVDF 55.55 42.84 1.61 0.00
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3.6. Clean Water Permeability

Figure 7 shows that the CA membrane outperforms the rest in filtration performance
by having the highest permeability compared to PSF and PVDF membranes. Clean water
permeability involves the passage of water molecules through the membrane under cross-
flow filtration. The CA membrane showed that the water permeability of 1658 L m−2 h−1

bar−1 is significantly higher than the PSF and PVDF membranes clean water permeability
of 446 and 175 L m−2 h−1 bar−1, respectively.
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Figure 7. Clean water permeability of the cellulose acetate (CA), polysulfone (PSF), and polyvinyli-
dene difluoride (PVDF) membranes.

When considering the pore size and distribution of the three membrane samples
evaluated in this study, the significantly high permeability shown by the CA membrane
can be ascribed by their low surface water contact angle (Figure 5) combined with the higher
surface pore population. Some membranes can show a similar pore size and distribution
but differ in pore number, as detailed in an earlier report [43]. When evaluating the surface
SEM image in Figure 2, it can be seen that the CA membrane’s surface pores are highly
populated compared to the rest.

3.7. Filtration Performance

Figure 8 shows that the CA poses the highest oil/water emulsion permeability for the
first 50 min of filtration, maintained at a value of 180 L m−2 h−1 bar−1 at the end of the
subsequent filtration cycles. The high performance of the CA membrane can be attributed
to the high oxygen content in the membrane that imposes surface hydrophilicity which is
beneficial for repelling deposited oil droplets when treating the oil/water emulsion and
forming a hydration layer on the membrane surface [36]. The membrane surface has high
surface porosity (from a high number of the surface pore), as shown on the SEM images
in Figure 2, which could offer a better oil/water emulsion permeability than the PSF and
the PVDF membranes. The clean water flushing introduced at each filtration cycle helps
improve the permeability of the membrane and remove the oily foulant and reduce the
fouling effect on the membrane. It can be observed that the water flushing at cycle 2, 3,
4, and 5 improve the subsequent permeability of the membrane in oil/water emulsion.
However, the water flushing in cycle 1 does not exhibit an increase of permeability. This
may occur due to the strong oil adhesion on the membrane surface that has caused the
emulsion permeability to dramatically decrease.
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In another study, the permeability of the oil/water emulsion for the commercial CA
membrane in the first cycle is 1900 Lm−2 h−1 bar−1. After the first flushing, the permeability
decreased significantly to 370 Lm−2 h−1 bar−1, following the third cycle of 90 Lm−2 h−1

bar−1. The subsequent cycles show no permeability, which demonstrated that the oil
particles have wholly clogged the membrane pores suggesting that severe membrane
fouling also happened to a plain CA membrane made from commercial polymer [30].
Although the commercial CA membrane has a high permeability at the initial phase, it
is worth noting that the permeability had a steep decrease. When compared to the CA
membrane from cigarette waste, the developed membrane exhibited a relatively slow
decrease in the whole five cycles. This constitutes an interesting phenomenon as the
developed CA is made of cigarette butt waste. A further comparison with PSF and
PVDF membranes optimized for oil/water emulsion filtration was reported earlier [10,42].
The permeability is comparable with the plain CA membranes developed from cigarette
butt waste reported in the present study. It suggests that the CA-based membrane from
cigarette butt, can further be developed to enhance its filtration performance via fabrication
parameter optimization or surface modifications.

3.8. Rejection Performance

To evaluate the oil separation efficiency, the oil rejection performances of the CA
membrane were evaluated and compared with PSF and PVDF membranes (Figure 9). The
CA membrane exhibits an excellent total oil rejection of 91.5%. This shows that the CA
membrane developed from cigarette waste is comparable to the established PSF membrane
that has achieved the rejection efficiency of 94.0%. In addition, CA could be a promising
candidate in achieving a large-scale separation of oil/water emulsion for its greater oil
rejection than the PVDF membrane. A study by Liu et al. found that the stainless steel
mesh (size 300 and 2300) alone could not separate the oil/water mixture well as the oil and
water passed through the mesh unobstructively [18].
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A similar study by Ifelebuegu et al. using waste cigarette butt in an oil spill clean-up
found that waste filters adsorbed 16 to 26 times their weight in various oils, which is a
better oil sorption performance than those commercial adsorbents. It also reported that
the sorption capacity did not significantly deteriorate after 20 cycles of reuse, with up to
75% sorption capacity retained [44]. Nair reported that the highest absorption of dye using
the CA membrane prepared from cigarette butts was obtained in slightly acidic conditions
with the pH of 6.15 [45].

The finding suggests the effectiveness of the developed CA membrane to separate
oil droplets. The good separation can be ascribed from the relatively large difference
between the mean flow pore size of 0.17 µm and most of the oil droplets >0.25 µm. Those
differences allow the separation through size exclusion mechanisms, in which oil droplets
were retained on the top of the membrane surface [35,46].

3.9. Membrane Fouling Analysis

Figure 10 shows the analysis of membrane fouling based on its reversibility for CA
compared to the PSF and the PVDF membranes. As expected, the total fouling for all
three types of membranes showed an increasing trend with the increasing filtration cycles.
The trend of multiple cycle performance is consistent with our earlier report treating the
same feed following similar filtration cycles [10–12,47]. The three membranes pose quite
distinct fouling reversibility. The total fouling depicted by PVDF at each cycle is relatively
lower than the PSF and the CA membranes, indicating a lower degree of permeability loss
and better antifouling properties. However, when judging from the actual permeability
data in Figure 8, the performance of the PVDF membrane is comparable with the CA
membrane. The low degree of fouling in the PVDF membrane compared to others is due
to its relatively low clean water permeability compared to others (Figure 7). Therefore, the
fouling parameters become low since the oil/water emulsion permeability was compared
to the initial clean water permeability (Equations (3)–(5)). On the contrary, both CA and PSF
demonstrated high total fouling since they pose high clean water permeability accompanied
by similar oil/water emulsion permeability.

It is observed from Figure 10 that the membrane fouling in CA and PSF are dominated
by irreversible fouling. The CA suffers a relatively high degree of irreversible fouling since
the first filtration cycle. It should also be noted that CA has five-folds higher clean water
permeability than PSF and PVDF at the initial cycle. It is speculated that the high fouling
rate of CA was caused by the rapid compaction of permanent foulant trapped in the pores
that occurred during the first cycle resulting in a lower oil/water emulsion permeability.
After the first cycle, the rate of foulant accumulation is very small, indicating that the
foulant was well consolidated. It is worth noting that the occurrence of membrane fouling
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can be well managed by implementing membrane cleaning cycles. Under proper fouling
management, the lifespan of a membrane can be over 15 years [48].
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The finding on a high degree of irreversible membrane fouling during the early stage
of filtration indicates the possibility of further developing the phase inverted cigarette butt-
based CA membrane, focusing on combating the irreversible fouling. As demonstrated in
an earlier report, the incorporation of zirconia (ZrO2) particles in the CA casting solution
resulted in a decrease in fouling resistance. The total fouling resistance for pure the CA
membrane is 7.19 × 1010 m−1. The addition of 7 wt% of ZrO2 decreased the total fouling
resistance to 2.58 × 1010 m−1 [49]. This may due to the increase in hydrophilicity of the CA
membrane, which increases the interaction of the molecules on the membrane surface. A
recent study reported that incorporation of cupric acetate in the non-solvent bath facilitated
between the polymer with Cu that enhanced wettability, decreased surface roughness and
clean water permeability [50]. The membrane properties can also be tuned through covalent
functionalization of the polymer, which not only improves membrane separation properties
but also the chemical and physical properties of newly synthesized materials [51].



Polymers 2021, 13, 1907 13 of 15

4. Conclusions

This study unravels the potential of CA from cigarette butt waste as material for
membrane fabrication for the oil/water emulsion treatment. This utilization of waste can
alleviate the environmental problems from cigarette butt waste as well tackle the issue of
oil/water emulsion. The CA-based membrane was successfully fabricated via the phase
inversion method with a typical structure formed from the instantaneous demixing process.
The findings show that the CA membrane poses hydrophilicity properties with a contact
angle of 74.5◦, lower than both PVDF and PSF membranes used as a reference. The pore
size and distribution are suitable for oil/water separation. Despite being prepared from a
waste cigarette, CA also poses a good surface property similar to the ones prepared from
commercial PVDF and PSF polymers with equally asymmetric morphology. The pore
size of CA demonstrates that the CA is within the microfiltration range. The developed
CA membrane shows a promising flux of 180 L m−2 h−1 after multiple filtration cycles of
oil/water emulsion. However, it still suffers a high degree of irreversible fouling (>90.0%),
suggesting the potential for future improvement through optimization of fabrication param-
eters or via surface modification. Overall, the results demonstrate a sustainable approach
in handling the oil/water emulsion pollution issue by treatment using the CA membrane
derived from cigarette butt waste.
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